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Abstract. Crystal growth phenomena are discussed with special reference to growth from
vapour. The basic concepts of crystal growth are recalled, including the different growth modes,
the dependence of the growth rate on disequilibrium and temperature, and the atomic processes
relevant for growth. The methods used in crystal growth simulations are reviewed, with special
reference to kinetic Monte Carlo methods. The roughness of growing surfaces, and the roughness
properties of the discrete and continuum growth models (the latter being described via stochastic
differential equations) are discussed, together with the special phenomena occurring in the
vicinity of the roughening temperature. A number of simulations based on the six-vertex model
and on kinetic counterparts of the BCSOS model are reviewed. Finally, the instabilities arising
during growth are considered, including a discussion of phenomena such as dendritic growth and
ramified cluster growth and reviewing the recent, extensive studies concerning unstable MBE
growth.
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1. Introduction

Science has become more and more interested in evolution phenomena. Probably most
sciences study at first static, or equilibrium phenomena (the two concepts not being
necessarily synonymous)†, not because they are more interesting, but because they are
simpler and—even more important—more uniquely defined. Evolution depends on the
initial conditions, but often leads to some equilibrium (or at least steady) state, independent
of those conditions. No wonder that the scientists are tempted to focus their attention on
this steady state rather than on the myriad evolution processes leading to it. In recent times,
however, the evolution processes have ultimately become a central object of scientific study
in many fields.

Crystal growth is special in that it was studied in detail, because of its practical
importance, much before the present fashion (for a comprehensive review of crystal growth
see Hurle (1993)). Recently, however, it has become clear that crystal growth is part of a
much wider field of growth phenomena which is being intensively investigated, forming the
subject of something which may be loosely calledgrowth science, to which e.g. the books
by Vicsek (1989) and Barabási and Stanley (1995) are devoted.

A vast variety of phenomena are studied by growth science, ranging from the spread
of a forest fire to the sedimentation of sand on the bottom of a water basin. These growth
phenomena have been recently reviewed e.g. in a beautiful article by Halpin-Healy and
Zhang (1995); another important review was published by Evans (1993) dealing with what
he callssequential adsorption. Very recently, an interesting book by Villain and Pimpinelli
(in French) appeared, dealing with many aspects of crystal growth (Villain and Pimpinelli
1995). The present article, for lack of space and competence, and also in order to avoid
repetition, will not cover many subjects discussed in the above-mentioned reviews, and
will rather discuss alternative topics. Thus, in comparison to Halpin-Healy and Zhang, we
will try to remain closer to a microscopic picture and, in comparison to Evans, to remain
closer to the equilibrium situation (this, in our opinion, determines a very interesting range
of physical parameters). The physics thus obtained, notwithstanding the simplicity of the
models, will hardly be simple, with the unpleasant consequence that very little that is exact
will be said, most results being obtained from simulations. In spite of the title, there will
be very little mathematics in this review.

To put the situation in perspective we must from the beginning distinguish two scenarios:
stable versus unstable growth. Somewhat surprisingly, the scientists studying instability and
ramifications have often ignored the (usually more microscopic) problems arising in stable
growth, and vice versa. We think, in contrast, that very interesting, although complex,
phenomena occur at the boundary between the two fields, such as the onset of ramifications
near equilibrium. According to tradition, however, we shall treat first the stable, then the
unstable scenario, stressing, whenever possible, such boundary phenomena.

More than 15 years ago, the stable- and unstable-growth phenomena were treated,

† An exception is linguistics:diachronic linguistics(i.e., the study of the evolution of languages) is, in a certain
sense, older thansynchronic linguistics. But, in the case of linguistics, no equilibrium is in sight.
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respectively, in two famous review articles by Weeks and Gilmer (1979) and by Langer
(1980). The overlap between those two papers was remarkably vanishing, as if they treated
completely different fields of science. This situation was unsatisfactory: it was clearly
necessary to feed an atomistic picture into the theory of unstable growth, or to allow for non-
trivial boundary conditions and shapes in the dynamics of crystal growth. This has happened
subsequently, but not in the most direct way, since some remarkable discoveries have led the
scientific fashion in unsuspected directions. The first such discovery was diffusion-limited
aggregation (DLA), proposed by Witten and Sander (1981); the second were the stochastic
differential equations for growth, which, after a relatively timid beginning by Edwards
and Wilkinson (1982) (but the work of Chui and Weeks (1978) is even older) achieved
explosive fame especially after Kardaret al (1986) proposed their non-linear equation.
These developments have led to the vast field of fractal growth phenomena, to which books
have been devoted (Vicsek 1989, Barabási and Stanley 1995). How is one to describe this
enormous field? Completeness is out of the question; describing only our own work, and
work related to it, would be incredibly limited. Something in between is clearly possible,
but a condition is to keep clearly in mind the physical problems to be solved.

When dealing with crystal growth, many possibilities are to be considered, according
to the nature of the fluid phase (melt, solution, vapour), to the stable or unstable nature of
the growth process, to the growth mode (layer by layer, continuous, step flow, spiral,. . .),
to the growth rate (linear versus non-linear in thedisequilibrium1µ), etc. In some cases,
the anisotropy is so strong that the growth effectively takes place in two dimensions. It
is also important whether the growth occurs at a reasonably well defined surface (hence
predominantly in the direction normal to it) or in all directions. It is easily understood that
these varying conditions lead to very different scenarios; yet it is not hopeless to treat some
of such scenarios in a unified way, and indeed to find the values of the parameters where
the process crosses over from one scenario to another. This will in many cases be our goal.
In the following, we will focus attention on growth from vapour, unless otherwise stated.
A preliminary, shorter account of some of the subjects discussed here was presented some
time ago at the CMD/EPS Conference in Regensburg (Leviet al 1993) and some of the
techniques were discussed elsewhere (Kotrla 1996a).

The paper is organized as follows. In section 2 we rapidly review some traditional
notions of crystal growth (for further detail refer e.g. to the work of Weeks and Gilmer
(1979)). In section 3 we describe the methodology of computer simulation for growth
problems, and we give a short overview of the methods used in many simulations, of great
applicational importance, related to molecular beam epitaxy. In section 4 we briefly discuss
the very active field concerning the growth of rough surfaces (and the roughness of growing
surfaces). In section 5 we describe work, mostly done by our research group, on growth
models based on the six-vertex model: some of them (but not all) being kinetic counterparts
of van Beijeren’s BCSOS surface model and generalizations thereof. In section 6 we
discuss dendritic growth, ramified cluster growth, and also recent results on a new type of
unstable growth—pyramid-like growth observed (both experimentally and computationally)
in epitaxy. Finally in section 7 we give a short outlook on future perspectives.

2. Traditional concepts of crystal growth

In this section we rapidly review some traditional notions on crystal growth. This is not of
historical interest only, since the present-day research is still largely based on such notions.
We restrict consideration here to the stable-growth scenario, and unstable growth will be
discussed in section 6.
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2.1. Surface growth

For stable growth the most widely considered geometry is that of a planar or quasi-planar
surface, moving in the positivez-direction with (on average) constant velocityv. (For
different geometries, see subsections 6.1 and 6.2.) Obviously if the crystal is in equilibrium
with its vapour (i.e. they have the same chemical potentialµeq), v vanishes. Otherwise,
even if the chemical potential of the crystal may still be identified with the equilibrium
chemical potential for sublimationµeq , the chemical potentialµ of the vapour is higher.
The difference1µ = µ − µeq is the driving force for crystal growth.

Two basic and related questions are: what is the growth mode (see subsection 2.2
below) and what is the growth kinetics, i.e., how does the rate of growthG† depend on
the driving force1µ (see subsection 2.3)? Very different situations are encountered: linear
growth versus highly non-linear nucleation; also: non-trivial space-time patterns (self-affine
surfaces and fractal growth). Instabilities may arise, leading possibly to dendrite formation
or to the non-existence of a steady rateG, but these will be considered later (see subsection
6.1).

An extreme but important case is when detachment (evaporation, desorption) is
altogether negligible. This case is encountered in molecular beam epitaxy (MBE: see
subsection 3.3), and is also the subject of the beautiful review article by Evans (1993), whose
title (Random and cooperative sequential adsorption) indicates the irreversible deposition
of new atoms (as opposed to the equilibrium situation where atoms stick at the surface and
detach from it with the same probability). Much of the work done in recent years refers
to this case; for us, however, MBE corresponds to high1µ (not so high, however, that
diffusion can be disregarded). We treat, as a rule,1µ as finite and consider the1µ = 0
(equilibrium) and1µ → ∞ (pure growth) cases as important limiting cases, useful, in
particular, for purposes of checking. MBE is close, but not identical, to the latter case (and
is of great importance for applications).

It should be noted that, as long as vapour growth is considered and the vapour may be
treated as an ideal gas, the vapour density and pressure will be proportional to theabsolute
activity z = exp(βµ) (whereβ = 1/kBT , kB being the Boltzmann constant, andT the
temperature), so changing1µ is equivalent to changing the vapour pressure (in excess of
the equilibrium vapour pressurepeq‡). In the case of MBE the vapour is replaced by a
beam, whose directionality implies a more severe sort of disequilibrium than that given by
1µ only. If an appropriate average over beam directions is taken, the MBE case becomes
identical to the vapour case (with1µ very large). This averaged situation will be taken in
the following as the MBE limit, unless stated otherwise.

2.2. Growth modes

Over many decades, it has become customary to distinguish the growth modes into broad
categories, which preserve their importance even now, although some definitions have to
be somewhat modified.

First of all, we have thelayer-by-layer(or Frank–van der Merwe) growth mode (briefly:
layer growth). Preferentially a crystal layer tends to be completed before a new layer is
started above it (figure 1(a)). Near equilibrium, there is a bottleneck strictly related totwo-

† G is proportional tov, but is more loosely defined: its physical dimensions may vary according to convenience,
e.g.G may represent the number of new atoms added to the crystal per unit time and area, etc.
‡ Of course the vapour pressure might be less thanpeq , but this unsaturated-vapoursituation implies that the
crystal sublimates (albeit possibly slowly) and disappears instead of growing. The extreme case is removing of
material in far-from-equilibrium conditions: sputtering or ablation.
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Figure 1. Modes of growth: (a) Frank–van der Merwe, (b) Volmer–Weber, (c) Stranski–
Krastanov.

dimensional nucleationof clusters (islands) and as a consequence the kinetics in this mode
is highly non-linear (see below). This mode is also calledtwo-dimensional growth. Notice,
however, that although in MBE two-dimensional nucleation and layer-by-layer growth are
possible, there is no bottleneck: atoms are fed in from the beam (or gas) at such a high rate
that no barrier to nucleation can affect the kinetics.

Then we have the opposite situation: the Volmer–Weber, orthree-dimensionalgrowth
mode. Many crystal layers grow at the same time: the atoms, depositing over relatively
high layers, cause the surface to form hillocks and cavities (see figure 1(b)).

The mode of growth can change with the substrate temperature, or with the strength
of the disequilibrium. In far-from-equilibrium MBE growth, usually the growth mode
changes from three-dimensional growth at low temperature to layer-by-layer growth at
higher temperature. This transition, as we shall see, is due to the fact that at sufficiently
high temperature the adatoms on the surface become so mobile that they can jump over
local energy barriers, including the barriers at step edges which at low temperature prevent
an atom from jumpingdowna step (a necessary process for layer growth). Sufficient inter-
layer transport causes the surface to be smooth and to grow according to a two-dimensional
mode. Under some conditions, when the adatoms are mobile but the barriers at step edges
suppress the inter-layer transport, three-dimensional growth can proceed in a special way
resulting in the creation of large, ordered, e.g. pyramid-like features on the surface (see
subsection 6.3).

Different scenarios have to be considered for growth near equilibrium (see section
5) below). Typically, a two-dimensional surface in equilibrium undergoes a roughening
transition at a temperatureTR: the surface is smooth belowTR but rough above. Growing
surfaces are evenrougherthan in equilibrium, because in addition to the thermal fluctuations
there are also stochastic fluctuations due to the growth process. Hence, aboveTR a crystal
surface should never grow in the layer-by-layer mode, although it can grow in this mode
belowTR. At these high temperatures we have thus a reversal transition, from the layer-by-
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layer mode to the three-dimensional mode with increasing temperature. This was studied
in detail by simulations (see e.g. Kotrla and Levi (1991)) as well as being observed in
experiments (Bennema 1993). Actually, Bennema observed a more complicated effect:
with increasing1µ and decreasingT the growth mode changed from 3D to layer by layer
to 3D again, due to the non-linear nature of the boundary between modes.

On a certain crystal, thesubstrate, a crystal of different chemical composition may grow.
If the crystal structure of the substrate is retained (up to a certain thickness of the growing
deposit) we have the phenomenon ofepitaxy(sometimes calledheteroepitaxy, as opposed
to homoepitaxyindicating the growth of a deposit having the same chemical nature as the
substrate). In epitaxy, between the Frank–van der Merwe and the Volmer–Weber growth
modes, an intermediate case is possible: the Stranski–Krastanov growth mode, where the
deposit first grows layer by layer on the substrate and then, beyond a few layers, the growth
becomes three dimensional (see figure 1(c)).

Another important case (which implies the surface to be a vicinal surface, either globally,
with a well defined miscut with respect to a surface with low Miller indices, or at least, if
there is no miscut, locally, at the slopes of a gentle hillock) is thestep-flowgrowth mode:
the surface is characterized by a step array, and the crystal grows as a step advances over
the lower terrace. In a steady-step-flow situation, all steps move at the same velocityu

in the direction down the step array. The step velocityu is proportional to1µ and the
growth velocity isv = au/l, wherea is the step height andl the mean distance between
two successive step edges.

2.3. Kinetics

2.3.1. The Wilson–Frenkel limit.The three-dimensional mode of growth is fast, andv is
approximately linear in1µ, so akinetic coefficientmay be defined:

K̃(T ) = lim
1µ→0

G(1µ, T )

1µ
. (1)

We can simply estimate the growth rate (or more precisely, an upper bound to it). LetS

be thesticking rate, E the evaporation rate. ThenG = S − E. At equilibrium, Seq = Eeq .
S is proportional to the vapourpressure, i.e. to†

S = Seqeβ 1µ. (2)

The growing surface is rougher than the equilibrium surface, so it has moreevaporation
sites:

E > Eeq. (3)

Thus the Wilson–Frenkel (WF) (Hertz 1882, Wilson 1900, Frenkel 1932)upper boundto
the growth rate is obtained:G < GWF , where

GWF = Seq(e
β 1µ − 1). (4)

At high T and relativelylarge 1µ there are no bottlenecks and the WF limit is approached.
Extrapolating back to vanishing disequilibrium, the corresponding kinetic coefficient is found
to be

K̃WF = Seq

kBT
. (5)

G/Seq in the WF limit (more generally, in the continuous-growth mode)decreaseswith
increasingT .

† This relation can be directly derived if we use the statistical-mechanical expression relating the pressure,p, and
the chemical potential,µ: µ = f (T ) + kBT ln p, wheref (T ) is a function of the temperatureT only.
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2.3.2. Two-dimensional nucleation.In layer-by-layer growth the surface is supposed to
be a smooth plane covered by a sparse population of two-dimensional clusters, ornuclei,
or islands†. Crystal growth takes place via the formation (nucleation) and growth of such
nuclei.

Let us consider growth near equilibrium. Islands nucleate from adatoms on the surface,
while at the same time adatoms are exchanged with atoms of the gas.

The promotion rateI is the rate at which a new atom is added to an island, more
precisely the number (divided by the total number of sites) of islands of sizen that are
promotedto size n + 1 per unit time (under steady conditionsI is independent ofn).
The promotion rate was calculated in the 1930s by Becker and Döring (1935), following
pioneering work by Volmer and others (reviewed in Volmer (1939))‡ as

I = ASeq

√
pep−q (6)

(the main factor is e−q), wherep = β 1µ, q = βε2/1µ, andA depends only weakly onq,
decreasing from

√
π to

√
π/2 asq varies from 0 to∞. q is an important parameter of the

problem. In a first approximationε equals the bond energyε0, but in a better approximation
it is the step free energyper unit length. Thusε andq vanish atTR (there is no barrier to
nucleation on a rough surface).

The growth rateG is not proportional toI , but toI 1/3! This was found by Kolmogorov
(1937) and his followers of the Soviet school (see Zeldovič (1942) and others), studying the
statistics of how surface points are reached by growing islands. Assume a certain velocity
u of island expansion. For any point P the probability of growth having taken place at P is

prob[covered]= 1 − prob[uncovered]. (7)

prob[uncovered] is the probability of Pnot getting covered at timet by islands nucleated
at any previous timet ′, which can reach P only if nucleated within a distanceu(t − t ′):

P(t) = 1 − exp

(
−πIρu2

∫ t

0
(t − t ′)2 dt ′

)
= 1 − exp(−(π/3)τ 3) (8)

whereρ is the number of atoms per unit area (e.g. for a square lattice, ifa is the lattice
spacing,ρ = a−2), andτ = (Iρu2)1/3t .

The deposition rate on aninitially ideal surfaceis

dP

dt
= (Iρu2)1/3e−(π/3)τ 3

πτ 2. (9)

dP/dt increases, then decreases (because the initial surface disappears). A rough estimate
of the growth rate is (Weeks and Gilmer 1979)

G = max
dP

dt
= 1.194(Iρu2)1/3. (10)

Other estimates of the coefficient include: 1.015 (Nielsen 1994), 1.137 (Rangarajan 1973),
. . .. But u is proportional to1µ (e.g. u = (1 − e−p)u0 whereu0 is the velocity in the
absenceof evaporation (according to some sort of ‘Wilson–Frenkel law’ in two dimensions);
but u0 ≈ aS = aepSeq—thusu = a(ep − 1)Seq ≈ apSeq , for p small).

Moreover e(1/3)p ≈ 1. Therefore

G ∼ p5/6e−(1/3)qSeq . (11)

† Some people use the termsislands, island growthto characterize three-dimensional growth. We do not use such
(rather confusing) nomenclature in this paper.
‡ A short, but nice historical account of the origins of crystal growth theory was recently given by one of his
founders, Rostislav Kaischew, on his 85th birthday (Kaischew 1994).
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p5/6 is called theZeldovič factor. But the main factor is of course

exp

(
−1

3
q

)
= exp

(
− ε2

3kT 1µ

)
.

Layer growthcorresponds to asmooth surfaceand relation (11) describes the kinetics
of this growth. In principle it should take place at relatively lowT . At TR, ε vanishes,
andthree-dimensional growthshould take over (cf. also section 5). Actually, this scheme is
well verified experimentallynot for growth from vapour (see, however, Bennema (1993)),
but for growth of solid4He from thesuperfluid! (as established by experiments by Balibar
and collaborators (Balibar and Castaing 1980)).

The kinetics of layer-by-layer growth in MBE is trivial. For temperatures that are not
very high, evaporation can be neglected and any atom from the beam sticks to the surface;
hence the growth rate is given by the flux of incoming particles.

The growth rateG/Seq in equation (11)increaseswith temperature for fixed1µ (at
least if 1µ < 2βε2). This behaviour is characteristic of layer growth, andoppositeto
what happens for continuous growth, whereG/Seq decreaseswith increasingT . Thus the
maximumof G/Seq marks the passage from layer-by-layer to continuous growth (Kotrla
and Levi 1991).

2.3.3. Spiral growth. At low T , 1µ where nucleation is impossible, the reasonably fast
growth of crystals (as carefully measured e.g. by Volmer and Schultz for iodine (Volmer
and Schultz 1931)) was a mystery in the 1930s and 1940s, until Frank explained it asspiral
growth around a pre-existingscrew dislocation(Frank 1949). The dislocation produces a
step and crystal growth proceeds by rotation of the step, which is wound in a spiral. Thus
nucleation is replaced by step flow! The spirals were subsequently observed by electron
microscopy. The growth rate is

G ∼ (1µ)2 (12)

sinceG = ua/l (u is the step velocity,a is now the step height, andl is the step spacing)
and l is proportional to the radiusρc of the critical nucleusfor nucleation, which is of the
order of ε/1µ, and thusl ∼ 1µ−1; on the other hand,u ∼ 1µ. At lower temperatures,
circular spirals are replaced bypolygonal spirals, exhibiting the lattice symmetry (Budevski
et al 1975, Swendsenet al 1976).

2.4. Atomic processes during growth

In order to understand crystal growth phenomena it is important to have in mind the different
atomic processes that can take place during growth. Venables (1994) published a lucid
discussion of these some time ago. Here only a sketchy survey will be given (see also
Ricciardi (1996)).

The surface topography shows sequences of terraces and steps; sometimes hillocks (or
cavities) are formed. Accordingly, in deposition new adatoms may stick on terraces or at
steps; terraces and steps, in turn, may be located in a flat area or belong to a hillock or
cavity. Similarly, in desorption adatoms may leave from terraces or from steps (atoms well
inserted in a flat portion can seldom or never detach from the surface).

Adatoms move on the surface, diffusing either on a terrace, or along (usually below)
a step edge. When in its wanderings on a terrace an adatom reaches a descending step,
it encounters the above-mentioned energy barrier, theSchwoebel, or more correctly the
Ehrlich–Schwoebel (ES) barrier(Ehrlich and Hunda 1966, Schwoebel and Shipsey 1966,
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Schwoebel 1969), due to the fact that, when at the upper step edge, it is quite poorly bound
to the substrate atoms. In order for layer-by-layer growth to be possible, the adatoms must
be able to descend the steps and stick at the lower edge; if the ES barrier is too high, or
the temperature is too low, they tend to remain on the upper terrace and the growth is three
dimensional.

Two adatoms may associate (bind to each other), forming the two-particle embryo of
a cluster. A growing cluster can capture a new adatom, or it may lose an adatom to the
surrounding terrace. Two clusters can coalesce, forming a larger cluster, or a cluster can split
into two. Finally, there can be an interchange between adatoms and substrate atoms: such
interchange lies at the origin of segregation phenomena, favoured by low surface tension of
the segregating species. The latter remains at the surface during growth and may tend to
act as asurfactant, favouring layer growth†.

If the vapour can be treated as an ideal gas at temperatureT0 and pressure p0 (as is
usually the case), the number of atoms of massm falling on the surface per unit area and
time is

R = p0(2πmkT0)
−1/2 (13)

of which, if s is thesticking coefficient‡, sR remain on the surface. The latter gets covered
by single adatoms, whose densityn1 increases initially asn1 = sRt . Adatoms, however,
may redesorb (with a permanence time on the surface proportional to exp(Ea/kT ), Ea

being the energy barrier, and the surface temperatureT being not necessarily equal to the
gas temperatureT0) or may associate in pairs. Before desorption or association they migrate
on the surface with a diffusion coefficientD, given in a first approximation (neglecting long
jumps (Ferrandoet al 1994)) by

D = D0e−Ed/kT (14)

whereEd is an energy barrier to diffusion (considerably lower thanEa) and, neglecting
long jumps, the prefactorD0 for jump diffusion has the form

D0 = 1

4
νl2 (15)

whereν is an oscillation frequency within the well at a site andl is the length of a diffusion
step. Ed varies widely: on Rh(111) it is only 0.16 eV but on W(111) (tungsten is bcc) it
is 1.78 eV, more than ten times larger (Kellogg 1994).D0 also varies widely, but is of the
order of 10−7 m2 s−1. Knowing the permanence time and the diffusion coefficient one can
estimate the path length of an adatom on a surface, which can be quite long. The dynamics
governed by equation (14) is often calledArrhenius dynamics.

In some systems, as mentioned above, the adatom may exchange positions with the
underlying lattice. A good example is Pt(011). Generally speaking, on the (011) surfaces
of fcc crystals, single-particle diffusion can take place easily only along the grooves (in
the 〈110〉 direction); diffusionacrossthe rows, however, may take place, but is not single
particle: the adatom, instead, moves to a row displacing a row atom which becomes an
adatom in the next groove. Similar exchange phenomena occur on the (001) surface.

Not only single adatoms but also clusters can diffuse. Usually this diffusion is much
slower but in rare cases it is comparable: small rhenium clusters, e.g., diffuse as easily on
W(112) as single rhenium atoms.

† Genuine interchanges between the bulk and surface, leading to segregation (Tréglia 1992, 1994) and surfactant
effects (Vegtet al 1992, Oppoet al 1993), can be quite important, but are outside the scope of the present review.
‡ For metal atoms on metalss is 1, but for, say, rare-gas atoms on Au(111) (but also on alkali metal surfaces)s

can be very small. Also,s is an average: in each individual collision, the sticking probability actually depends on
the local environment.
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Figure 2. Descent of a step by direct motion (a) and by atomic exchange (b).

The ES barrier, mentioned above, hinders the descent of an adatom from a step,
favouring three-dimensional growth. The situation, however, is not always so simple. At
steps, there are not only energy maxima, but minima as well: in some cases, the latter
may be more important than the former. In other cases the ES barrier is very high for
single-atom diffusion, but can be circumvented by exchange (the adatom incorporates into
the upper terrace, whose former last atom remains as such, but moves one space on top
of the lower terrace: see figure 2(b)). Finally, the phenomenon of re-entrant layer growth
(found by Kunkelet al (1990) at low temperatures) shows that the ES barrier effect does not
simply cause a transition in the growth mode from three dimensional at low temperatures
(where the adatoms cannot descend the steps) to layer by layer at highT (where they have
enough energy to overcome the barrier). Re-entrant layer growth has been widely discussed:
presumably at very lowT the islands are very small (which implies low barriers) and more
or less dendritic (which implies no barriers at concavities). But a role may also be played
by genuine kinetic effects, such as detachment by hitting (knockout) (Šmilaueret al 1993b)
or funnelling (Evans 1991).

2.5. Diffusion bias

When a diffusing atom reaches the upper edge of a step, it finds itself in an environment
corresponding to a maximum of energy, due to the reduced number of bonds available (see
figure 2). This implies a diffusion barrier preventing the atom fromdescendingthe step.
As we have seen, such anEhrlich–Schwoebel effector diffusion bias(Villain 1991) has a
roughening effect on a high-symmetry surface, by preventing layer-by-layer growth at low
temperatures, and can lead to unstable growth (see subsection 6.3). It can have, in contrast,
in 1 + 1 dimensions, asmoothingeffect on a vicinal surface, where the growth takes place
by step flow. As noted by Villain (1991), the atoms falling on a terrace will accumulate at
the upper step; if a terrace happens to be wider than average, more atoms than average will
deposit on it, and the upper step will move in more quickly, thereby reducing the area of
the terrace. Thus the steps will tend to be equally spaced†.

† In 2 + 1 dimensions the situation is more complicated; see subsection 6.3.
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Let us study therecoveryof a vicinal surface from a sinusoidal perturbation, assuming
perfect diffusion bias. In the following simple calculation island formation is neglected;
otherwise, as shown by Krug and Schimschak (1995) an instability arises, similar to what
happens on singular surfaces: see subsection 6.3. Ifl is the average step spacing andu

the average step velocity, and if when moving from left to right the steps aredown, the
equation of motion of thenth step is

dxn

dt
= u

l
(xn+1 − xn). (16)

Introducing the perturbationξn = xn − nl − vt , the ξs obey the same equations as thexs,
but with different initial conditions: let us choose provisionally

ξn(0) = δ cos(pn). (17)

The solution is (Leviet al 1993)

ξn(t) == δe−(ut/ l)(1−cosp) cos

(
pn + ut

l
sinp

)
. (18)

For small (macroscopic)p = 2πl/3 this reduces to

ξn(t) = δe−up2t/2l cos

[
p

(
n + ut

l

)]
(19)

showing that recovery takes place with a characteristic time

τ = 2l

up2
= 32

2π2lu
(20)

(where3 is the wavelength of the perturbation), to be compared, e.g., withτ ≈ 32/λw for
the KPZ equation (Kardaret al 1986) (see below), whereλ is the KPZ parameter andw is
the surface width (ifa is the step height,w = (a/ l)δ in our case), and withτ ≈ 32/4π2ν

for a pseudo-diffusion equation of the EW type (Edwards and Wilkinson 1982), whereν is
the coefficient of the Laplacian (see below, section 4). That is, the present model resembles
the latter, with a pseudo-diffusion coefficientν = 1

2lu.
The treatment above is only correct for smallδ. If δ is large, on the other hand, the

evolution leads to a wave whoseshapechanges (while the amplitude decreases) (Leviet al
1993).

3. Crystal growth simulations

Except for exceedingly idealized models, the crystal growth processes (several of which
have just been described above) are too complex for a completely analytic description. It is
sometimes possible and useful to write amaster equation(including the relevant elementary
processes), whose solution is the set of probabilities for the possible surface configurations
(see subsection 3.2 and section 5); even so, such an equation is in general too difficult to
solve exactly, and it is necessary to resort tosimulations.

In classical condensed-matter physics, two kinds of simulation have proved useful:
molecular dynamics (MD) and Monte Carlo (MC) simulations. In crystal growth, however,
the relevant processes are so slow (the time required to form a new crystal layer is so long)
in comparison to the motion of individual atoms under the action of mutual forces, that
MD simulation is essentially not feasible (with very few exceptions: the interesting work
of Villarba and J́onsson (1994) is one of these; for other references see Kotrla (1996a)).
MD simulation is very useful for exploring possible processes and setting the parameters
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(e.g. the barriers to diffusion, the desorption energies, the most probable paths followed by
the system in phase space) which are relevant for growth, but to simulate growth itself MC
simulation is often the only realistic procedure. As we shall see, MC simulations, however,
cannot be very accurate and their results must usually be treated with caution.

One of the oldest Monte Carlo simulations of this kind was presented by Gilmer and
Bennema (1972a), without taking into account surface diffusion; a little later the same
authors performed a similar simulation including diffusion (Gilmer and Bennema 1972b).
This work was quite interesting; nowadays, however, due to progress both in statistical
mechanics and in computer science, it is possible to seek much more definite answers.

3.1. Models of crystal growth

MC simulations of growth are based on simplified growth models. In this subsection we
shall explain the construction of these models. The strategy is, as usual, to concentrate on a
few presumably important aspects (and processes) and disregard other details. In principle
MC simulation can be applied to both continuum and discrete models; however, in most
simulationsdiscrete modelsare used and we shall consider only these models here. This
simplifies things a lot but is, of course, an approximation.

Growth models have two essential ingredients: ageometricalpart and adynamicalpart.
In the case of discrete models both crystal and vapour are described in a crude approx-
imation: particles can occupy only discrete positions on some lattice. The system of solid
and vapour is approximated in this way by a lattice with some sites occupied by particles and
some left empty (lattice gas). The regions of high concentration of atoms correspond to the
solid and the regions of low concentration of atoms to the vapour (figure 3(a)). In this picture
many features of the real crystals are neglected: as a consequence, interactions between
atoms in a discrete model are necessarily artificial and the interaction parameters introduced
are only effective. The lattice gas model is a strong but acceptable approximation for a
crystal, it is quite a good approximation for a (not very dense) gas phase; it is problematic
for a liquid. The lattice gas model can also be justified for growth from solution if the
concentration is not very high.

It is natural to use the lattice gas model with a lattice whose symmetry is the same
as that of the crystal, but in some simulations the approximation is even more crude: a
simple cubic lattice is used instead of the real structure of the material. This simplifies the
simulation technically, and in the spirit of approximate modelling one can still expect to
get useful results when explaining the phenomena observed; some effects, however, may
be lost (Evans 1991).

The schematization goes one step beyond assuming a lattice gas. One can suppose that
the processes inside the fluid can be neglected and that the growth can be well described
only by processes at the interface between the fluid and the solid (figure 3(b)). On the
same level of approximation one can also neglect bulk diffusion inside the crystal. In this
picture we are interested only in the motion of the atoms forming the solid, and the growth
proceeds by adding atoms at positions determined by growth rules (see below). This is a
well justified approximation for ballistic growth where mutual interactions of particles in
the fluid are negligible. An important example is MBE growth, where the surface is directly
bombarded by atoms. Omission of processes inside the phases is problematic for growth
from the melt, and it may also be quite a crude approximation in the case of growth from
vapour not far from equilibrium (Xiaoet al 1991). In these situations there are gradients of
physical quantities (pressure, temperature) in the vicinity of the interface. Atoms inside the
fluid are diffusing towards the interface where the growth process takes place. Again, one
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Figure 3. A hierarchy of approximations in discrete growth models illustrated in the case of
two dimensions. (a) The configuration of the lattice gas with the bottom region corresponding
to solid and the top region corresponding to gas. Atoms are represented by hatched squares.
(b) Only positions of atoms of the solid are considered; new atoms are added by growth rules
defined in a model. The darker square indicates the overhang. (c) Surface configurations in the
SOS approximation.

can hope that, using appropriate growth rules, a good qualitative model can be formulated
even here, but the correct description of processes inside the phases may be crucial in some
cases.
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On top of these approximations, in the case of growth with a planar interface and under
conditions where very few vacancies and overhangs (cf. figure 3(b)) appear in the growing
material, one can use the so-called solid-on-solid (SOS) approximation (figure 3(c)). The
latter means that each atom is sitting on top of another atom: then the surface is described
by a single-valued function,h(x, y), of the substrate coordinates(x, y).

The second ingredient of any growth model is the definition of dynamical growth rules.
Here also some approximations are necessary. It is usually supposed that the motion of
individual particles (atoms or molecules) takes place instantaneously and that the motions
are independent and Markovian†. In order to develop a minimal model one selects only
processes which are supposed to be relevant for the phenomena to be studied, and others
deemed inessential are ignored. Particles are moved from site to site with a frequency
proportional to the rates of processes. If we consider for simplicity the growth of a
monatomic material, then the basic elementary processes (after omission of bulk diffusion)
are the following: depositionof an atom on the surface,migration of an adatom on the
surface anddesorptionof an atom from the surface. In the case of a multicomponent
material, elementary processes for each component have to be considered separately. In
principle quite complex rules, for example, for chemical reactions, could be included.

Usually the rates of elementary processes are very little known and they are guessed
with the use of all available experimental and theoretical information. They often depend
on the local surroundings—in the crudest approximation only on the occupation of nearest-
neighbour sites (but again quite complex dependence can be considered). We shall describe
examples of SOS models with specific growth rules in sections 5 and 6. We would like also
to note that in the context of fractal growth a whole menagerie of growth models has been
suggested (Herrmann 1986, Vicsek 1989, Kotrla 1992, Bunde and Havlin 1994, Barabási and
Stanley 1995) with applications ranging from crystal growth through aggregation phenomena
to biological growth.

3.2. Kinetic Monte Carlo simulation

Standard thermodynamical MC simulation is a method for the calculation of average values
in a given equilibrium thermodynamical ensemble. States in a space of configurations
are generated and used for the calculation of quantities of interest (Binder and Heermann
1988, Heermann 1990, Valleau 1991). The focus is on the convergence of series for the
quantities calculated, and one is not interested in the generation of a sequence of states
which properly corresponds to the dynamics of a system (in many cases the opposite is true
(Kang and Weinberg 1989)).

About 20 years ago MC simulation started to be used also for the study of kinetic
processes (Binder 1979, Binder and Kalos 1979). The aim of kinetic Monte Carlo (KMC)
simulation is to reproduce faithfullynonequilibrium, or relaxationprocesses. This time the
emphasis is on the correctness of time evolution in the simulation.

In order to fix ideas, let us denote the space of all possible configurations,C, in a
statistical-mechanical model byS = {C}, and a time-dependent distribution of configurations
at time t by P(C, t) .

The MC technique can be also viewed as a method of solving the master equation

∂P (C, t)

∂t
= −

∑
C ′

W(C → C ′)P (C, t) +
∑
C ′

W(C ′ → C)P (C ′, t) (21)

† Real processes are often much more complex: they may contain different time and space correlations.
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associated with a matrix oftransition probabilities, W(C → C ′), connecting two states.
Equation (21) describes a stochastic process in the Markovian approximation (van Kampen
1981).

The transition probabilities in standard thermodynamical MC simulation do not need
to have any relationship to the dynamics of the system. They are not considered as given
a priori but they are constructed in a way which guarantees that the distribution of the
states generated converges as fast as possible to the desired static distributionP(C). At
each MC step a trial configuration is generated, which is then either accepted or rejected.
A sequence of configurations,Ck, k = 1, . . . , M form a Markovian chain, which is used
for the construction of series for the quantities to be calculated. The condition ofdetailed
balance

W(C → C ′)P (C) = W(C ′ → C)P (C ′) (22)

is a sufficient (but not necessary) condition for the convergence of the Markov chain†. There
is freedom in the choice of the form of theWs, provided that the convergence is guaranteed.
The most common choice is that of Metropoliset al (1953) which can be formally written
as

W(M)(C → C ′) = min

(
1,

V (C ′ → C)P (C ′)
V (C → C ′)P (C)

)
(23)

where V (C → C ′) is some ‘underlying’, or ‘trial’, stochastic matrix specifying possible
transitions. IfP(C) is the canonical distribution,P(C) = (1/Z)e−βEC (β being the inverse
temperature andEC an energy of the configurationC), one recovers the popular form of
W(M)(C → C ′): a possible new configurationC ′ is accepted with certainty if it has lower
energy than the initial configurationC, and with the probability e−β 1E , with 1E = EC ′ −EC
if EC ′ > EC . It is easy to check that the detailed balance is satisfied in this case. There
are also other possibilities for the choice of the transition matrix, for example, the Glauber
form (Glauber 1963):

W(G)(C → C ′) = 1

1 + eβ 1E
(24)

but one can expect the Metropolis form to be often more efficient with respect to convergence
than the alternatives, since it makes the acceptance rate as high as possible.

Let us now describe the principle of kinetic Monte Carlo simulation. KMC simulation
is a method for solving the master equation (21) describing the stochastic evolution of the
system. The method for solving it is similar to that used in thermodynamical MC simulation:
making random choices a Markov chain is generated. Now, however, in contrast to the
procedure for standard thermodynamical MC simulation this chain has to represent a possible
evolution of the system simulated. Configuration changes have to correspond to real events
in the stochastic system. Each of the events in the real system can happen with some
probability per unit time (rate). To be specific, letN be the number of possible events in
a given configurationC; in the case of crystal growth they are, for example, the hopping
of an adatom, the adsorption of an atom, and so on. Let the rates of these events beRa,
a = 1, . . . , N . Both N and the set{Ra} depend on the configurationC. Let us define the
total rate

Q = Q(C) =
N∑

a=1

Ra. (25)

† More precisely, it is a member of the set of sufficient conditions together with other assumptions which are:
ergodicity,∀C,C′W(C → C′) > 0, and∀C

∑
C′ W(C → C′) = 1.
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The transition probabilities can now be formally written as

W(C → C ′) =
N∑

a=1

RaV
a(C → C ′) (26)

whereV a(C → C ′) is again an ‘underlying’ stochastic matrix for an eventa, specifying
whether the transitionC → C ′ is possible by this event. In the simulation eventa should
occur with probabilityRa/Q(C). It is realized by selecting possible events with probabilities
proportional to their physical rates. In principle, transition probabilities in KMC simulation
do not have to obey the detailed-balance condition (22), but it was observed (Rácz et al
1991) that in the case of diffusion it is advantageous to use models with rules satisfying this
condition. The detailed-balance condition should be satisfied if we are studying relaxation
towards the equilibrium because then the convergence to the equilibrium distribution is
guaranteed.

A simple, straightforward way to implement the idea of KMC simulation is the
following. Select the largest rateRmax of all rates of possible events in a model, calculate
the relative probabilitiesPa = Ra/Rmax and create the list of possible events in the starting
configuration. Then the inner loop of the algorithm in thekth time step is as follows†.

Algorithm 1.

(i) Select a possible event which can be realized in the configurationCk.
(ii) Generate a random number within a uniform distribution of random numbers,

r ∈ [0, 1).
(iii) Comparer with the probability of the selected eventPe: if r 6 Pe, proceed with

this event leading to a new stateCk+1 = C ′ and update the list of possible events; if not,
stay in the same state.

The whole procedure is repeated in the next time step and so on, until the simulation is
complete.

This algorithm is very seldom used in practice because in many cases, in particular in the
problems of crystal growth, it can be quite slow. The reason is that there could be a large
difference (many orders of magnitude) in rates for different events. The low-probability
events are then often selected and rejected. For example, in the simulation of diffusion
with probability given by Arrhenius’s law, the programme would select the movement of
a highly coordinated atom and a poorly coordinated atom with the same frequency, but
the atom with high coordination moves very little in comparison to the poorly coordinated
atom. The ratio of the two rates is proportional to eβ 1E , where1E is a difference between
the binding energies of the two atoms. This procedure leads to many unsuccessful attempts
especially for low temperatures. Sometimes the low-rate processes can be disregarded and
not included in the model, but in some situations the low-rate events have necessarily to be
performed during the evolution because the system has to pass through states where these
events are dominant. An example of this situation is the nucleation of an island on a flat
surface in the onset of layer-by-layer growth close to equilibrium. In this case the probability
of condensation of an adatom on the flat surface is much smaller than the probability of
desorption of that atom. In reality a critical island is formed after many fluctuations: it is
difficult to simulate these fluctuations by the simple algorithm described above.

A much faster algorithm without unsuccessful attempts (also called theN -fold method
algorithm) was formulated by Bortzet al (1975) (BKL) for the Ising model, and is often

† Several other algorithms were suggested in Binder (1979). ProbabilitiesPa can also be calculated from the
fraction Ra/Q(C); then they are, however, configuration dependent and have to be updated at each time step.
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used in KMC simulations of crystal growth (Clarkeet al 1991). The basic idea is that
at each MC step one process is selected with its corresponding probability and then also
realized, instead of attempting a generic process (whose probability may be much lower).
We shall describe first the simplest variant of this algorithm. Let us consider again thekth
time step, and use the same notation as before.

Algorithm 2 (the BKL algorithm).

(i) Choose a random numberr with uniform distribution in the range [0,Q(Ck)).
(ii) Find the corresponding event. This is done by choosing the first indexs for which∑s

a=1 Ra(C) > r.
(iii) Proceed with the events leading to a new configuration,Ck+1.
(iv) Update thoseRa that have changed as a result of events, updateQ and any data

structure being used.

This algorithm shows how to circumvent the problem of small acceptance probabilities,
but it is usually not applied in this form but in a modified more effective form (cf. algorithm
3 below). Let us consider the dependence of the computer time needed onN , which is
related to the system size. Steps (i) and (iii) take a time that is independent ofN , but step
(ii) is time consuming. If linear searching is used, the search time isO(N). Since the
growth rules are usually local the updating in (iv) does not have to cost too much computer
time, although careful programming is needed. One has to identify events which are no
longer possible in a new configuration; they have to be removed from the list, and new
events which become possible have to be added to the list. Depending on the data structure
used, the time needed in step (iv) isO(N) at the most.

A faster algorithm, according to Maksym, can be obtained if one considers, instead of
individual events, groups of events (Maksym 1988). Let us group events inton groups,
labelled byα = 1, . . . , n. This can be done either formally by forming groups with the same
number of events, which allows maximal effectiveness of the algorithm, or in a way which
keeps the physics clear: forming groups of the same kinds of event, corresponding to a
certain kind of process (diffusion of an adatom over the specific energy barrier, desorption
of an atom with the specific binding energy, and so on). Let us consider explicitly the
second case: each group will represent a certain kind of process, and all processes in a
group have the same rateρα.

In a given configuration,C, there are some possible processes, and each kind of possible
process can be realized in one or more ways, by one or more event. Assume that a process
α can be realized innα(C) ways, in the configurationC. We shall call the quantitiesnα(C)

multiplicities. For example, there may benadat (C) adatoms with the same surroundings
which can diffuse, or there arendep(C) sites where a new particle can be deposited. Some
particles can take part in more processes, and some processes may not be possible in the
given configuration. To each kind of process we assign a partial rate,qα(C) = nα(C)ρα,

and a relative probability,pα(C) = qα(C)/Q(C), which are conditional to the given
configuration. The total transition rate in a configurationC is now Q(C) = ∑n

α=1 nα(C)ρα.
In each step of the simulation (in the given configuration) the multiplicities of processes are
known. The algorithm in thekth step of the simulation proceeds as follows.

Algorithm 3.

(i) Choose a random numberr1 in the range [0,Q(Ck)).
(ii) Decide which kind of process will take place, choosing the first indexσ for which∑σ

α=1 qα(C) > r1.
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(iii) Select a realization of the processσ . Technically this can be done with the help of
a list of coordinates for each kind of movement, and an integer random numberr2 in the
range [1,nσ (Ck)]; r2 is generated and the corresponding member from the list is selected.

(iv) Perform the selected movement.
(v) Update the multiplicitiesnα, relative ratesqα, total rateQ and any data structure

being used.

To estimate computer time demands let us suppose that the multiplicities are
approximately the same,nα ≈ N/n. The search has two parts: searching for a group, which
takes timeO(N/n), and searching within the group, which takes timeO(n). Minimizing
the total time leads to an optimal number of groupsn ∝ N1/2, and the computer time then
scales asO(N1/2). The time for step (v) may still beO(N) at the most, but it is quite short
in many cases.

An even faster algorithm for largeN can be obtained if we instead of the two-level
search scheme, use a search scheme withK > 2 levels (Blueet al 1995), i.e., if we divide
the groups into subgroups, and these subgroups again into smaller subgroups, and so on
down to the levelK. Then the total search time scales asO(KN1/K). The best asymptotic
behaviourO(ln2 N) is obtained by using the largest possibleK, for which there are only
two events in the lowest-level subgroups. In practice, for typical simulation sizes,K = 4,
or K = 5, can give a faster scheme than theO(ln2 N) method (Blueet al 1995).

We shall conclude this subsection with a comment on time in KMC simulation. There
is no real time in thermodynamical MC simulation, and usually the number of steps, or
better the number of steps per site (number of sweeps) is used as ‘time’. The number of
MC steps, which we denote bytMC , is clearly not the correct measure, since it does not
take into account that different processes last for different time intervals. Nevertheless, in
some cases it is a good approximation to taket ∝ tMC†. This is true, for example, when the
system evolves periodically in the space of states and the time interval is sufficiently long.
This is the case of more or less perfect layer-by-layer growth. Or we can find a quantity
which is easy to measure in the simulation and which is proportional to the real time. This
is the case of far-from-equilibrium growth when there is a constant flux of particles falling
on the surface, and when all of the particles are incorporated. Then the number of layers
grown is proportional to the real time. In this case the kinetics is trivial (constant velocity),
but one can look at the dependence of geometrical properties as a function oftMC .

In the situations where we cannot justify a proportionalityt ∝ tMC we need to introduce
somehow the physical time into the KMC simulation. This can be done (Fichthorn and
Weinberg 1991, Kotrla and Levi 1991) provided that all physical processes can be separated
so that in any time instance only one event takes place, and the events are Poisson processes.
The time interval between two successive events (waiting time),τ , is a random variable
with the distributionP(τ) = Qe−Qτ , and the average value is〈τ 〉 = 1/Q (van Kampen
1981),Q being the total rate as defined before. In the algorithms described above another
random number,r3, uniformly distributed between 0 and 1, will be generated, thus giving
the time interval,1tk = −(1/Q(Ck)) ln r3, spent before the passage to a new configuration
Ck+1. Note thatQ(Ck) depends on the configurationCk. In an approximation one can only
suppose that the system stays in the stateCk for a time inversely proportional to the total
transition rateQ(Ck) (Kotrla and Levi 1991). Mean quantities during the growth are then

† A coefficient of proportionality may exist, depending on model parameters.
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calculated as time averages overM time points:

〈A〉 = t−1
M∑

k=1

1tk A(Ck) (27)

where the total time ist = ∑M
k=1 1tk. It was tested that this procedure agrees with the

results of the exact solution of the master equations (Kotrla and Levi 1991).

3.3. Methods for MBE simulations

MBE is a practically important problem with many applications in modern technology.
We do not attempt to review this vast subject which includes morphological studies,
submonolayer growth, recovery and even the removal of atoms during processes such as
sputtering and etching, but we rather restrict consideration to methodological aspects.

The dominant mechanism here is surface diffusion. Particles fall down onto the surface
and then migrate; at not very high temperatures desorption can be neglected. However, the
details of the growth process and the chemistry are complex and largely unknown. Many
results for semiconductors as well as for metals have been obtained by simulations with
simplified models. There is an extensive original literature as well as several review articles
(Madhukar and Ghaisas 1988, Vvedenskyet al 1990, Metiuet al 1992, Vvedensky 1993,
Haideret al 1995, Wolf 1995) on MC simulations of MBE growth. We shall describe here
the so-called full-diffusion (FD) SOS model with the simple cubic lattice (Vvedenskyet al
1990) which has been successfully used for the study of MBE growth—see e.g. Clarkeet
al (1991), Shitaraet al (1992),Šmilaueret al (1993b) and other references.

We shall first describe the simplest variant of the FD model: a model with Arrhenius
dynamics and random deposition without additional relaxation. In the FD modelany particle
on the surface can diffuse during the whole simulation; usually jumps only to nearest
neighbours are considered. In the model with Arrhenius dynamics the hopping rate does
not depend on the bonding energy at the final position (after the hop). The hopping rate of
a surface adatom isk0 exp(−βE), wherek0 is the vibration frequency of a surface adatom
(of the order of 1013 s−1), andE is the energy barrier to hopping. The energy barrier,E,
is a sum of two contributions, a site-independent surface termES and a term given by the
numberm of lateral nearest neighbours,mEN , whereEN is the in-plane bond energy. There
are two basic rates in this model, one for the deposition of new particlesF , and another for
the surface diffusion of a free adatom,D = k0 exp(−βES). Newly arriving particles are
deposited at randomly selected sites.

If we define an energy function,H = ∑
〈i,j〉 |hi − hj |, which is simply the number

of unsaturated lateral bonds, we can check that the transition probabilities for diffusion,
Wi→j ∝ e−βE , obey the detailed-balance condition:

Wi→j

Wj→i

= exp{−β(mi − mj)}. (28)

Different modifications of the model described above are possible: one can modify both
the rules for deposition and the rules for diffusion. Instead of purely random deposition one
can consider some mechanism for the incorporation of arriving particles (Clarkeet al 1991).
In this case the incoming particle searches for the ‘best’ site for deposition in some region.
A possibility which was used (Clarkeet al 1991) for the best choice is that the particle
searches for the site which provides the highest nearest-neighbour coordination within a
square with a side of 2Ri + 1 lattice constants centred upon the incidence site (in the case
of conflict the nearest site to the arrival site is chosen).
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Recently the FD model has been modified by introducing additional interaction with
next-nearest neighbours in planes below and above the hopping atom (Šmilaueret al 1993b,
1993a) in order to mimic the Ehrlich–Schwoebel effect.

In the simulations of the FD model (Vvedenskyet al 1990, Clarkeet al 1991) the
two-level BKL algorithm has been used (cf., however, Blueet al (1995)). Selection of the
site for deposition is very simple, one of theLd ′

sites is chosen at random. The diffusion
event is selected using a look-up table with a special randomizing procedure (Clarkeet al
1991).

The FD model has been successfully applied to the study of growth of different materials:
Si (Clarkeet al 1991), GaAs (Shitaraet al 1992), Pt (̌Smilaueret al 1993b), in spite of
the fact that it uses a simple cubic lattice instead of the proper structure of the material. A
practical advantage of the FD model described is its simplicity and flexibility, in contrast
to previous modelling work on the growth of III–V compounds (Madhukar and Ghaisas
1988) which took into account the structural and compositional complexity of the growing
system. We want to stress that the energy parameters determining the rates which are
found in modelling growth by discrete models are only effective parameters, and should
not be identified with the energy barriers for diffusion, even if very good agreement with
experiment is obtained. For instabilities arising in MBE growth, see subsection 6.3.

4. Growth of rough surfaces

4.1. Kinetic roughness

In recent years, the kinetic roughening of surfaces under the action of a driving force has
become a field of increasing interest. Several review articles (Meakin 1993, Halpin-Healy
and Zhang 1995, Krug 1996) and books (Vicsek 1989, Barabási and Stanley 1995) have
recently appeared on this subject and we will not review this extended field in the present
paper, but we explain some basic notions and very briefly describe the present state of the
art.

4.1.1. Scaling. The study of kinetic roughness† is connected with previous activity
on fractal growth (Herrmann 1986, Vicsek 1989). Here the focus is on the way in
which the surface becomes rough during far-from-equilibrium growth. Quantitatively,
the surface roughness is described by the surface widthw. Let us consider a surface
in a d-dimensional space given by a single-valued functionh(x, t) of a d ′-dimensional
(d = d ′ +1) substrate coordinatex. Then for a discrete model the surface widthw is given
by w2 = 〈N−1 ∑

i (hi − h)2〉, whereh = N−1 ∑
i hi is the average height,hi = h(xi ),

N = Ld ′
, L is a linear size of the system, the indexi labels lattice sites, and〈. . .〉 denotes

a statistical average (in simulations an average over different runs).
A remarkable fact is the existence of self-affine scaling. Surface fluctuations exhibit

universal behaviour leading to scaling in both time and space with two characteristic scaling
exponents: aroughness exponentζ and adynamic exponentz. The surface profile and its
properties are statistically invariant if the length in a direction parallel to the surface is
scaled by a factorb and simultaneously the length in the perpendicular direction and the
time t by factorsbζ andbz, respectively. Starting from an initially flat substrate, the surface

† The phenomenon is calledkinetic rougheningby several authors. We preferkinetic roughness, however, since
generally speaking no transition is implied here. Also, the genuine dynamic roughening proposed by Nozières and
Gallet (1987) is a very different effect (see the next subsection).
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width w obeys the dynamical scaling law (Family and Vicsek 1985)

w(t, L) ∝ Lζf (t/Lz) (29)

where the scaling functionf (x) has the properties:f (x) = constant, x � 1 andf (x) ∝ xβ ,
x � 1 (β = ζ/z). Therefore,w grows according to a power law,w ∝ tβ , until a steady
state characterized by a constant value of the width is reached after a timetsat proportional to
Lz. The value of the saturated widthwsat varies with the system size according towsat ∝ Lζ .
The scaling is valid also for other quantities; for example for the height–height correlation
function, or structure factor, it allows one to obtain more reliable results.

The exponentsζ and z (or ζ and β) characterize the scaling behaviour of the surface
width for a particular model. This allows one to classify different kinds of growth from
the statistical-mechanical point of view, in analogy with the theory of critical phenomena.
In fact, it has been observed that asymptotic values (values for very large system size and
long time) of the exponentsz and ζ in many cases can take only certain definite values
corresponding to different universality classes.

There are two approaches in this field: (i) investigation of stochastic continuum
equations describing growth (see below) and (ii) numerical simulation of discrete models†.
Both the discrete models and the stochastic equations are usually much simpler than more
realistic models used in qualitative, or semi-quantitative studies of growth, the reason being
that the scaling behaviour is believed to be universal, i.e., that it is the same in a simple
(toy) model as in a more realistic but also more complicated model of the same physical
situation, provided that both capture the same essential features of a growth process.

The universal behaviour has been observed in a wide variety of growth models and
there has been considerable effort put into finding different possible universality classes,
several of which have been found. The universality classes are denoted according to the
names of the corresponding stochastic equations.

4.1.2. Stochastic differential equations.The simplest time-dependent description of a
stochastic surface is afforded by the Edwards–Wilkinson (EW) equation (Edwards and
Wilkinson 1982):

∂h

∂t
= ν ∇2h + η (30)

where ν has the dimensions of a diffusion coefficient, andη is a noise term. This
equation can also describe agrowing surface if considered as written in thecomoving
frame. It was originally proposed (as an approximation to a more complicated equation) for
sedimentation. The EW equation, being linear, can be exactly solved; the scaling exponents
areζ = (3 − d)/2, z = 2.

In 2+ 1 dimensions (the critical dimension) the solutions of the EW equation give rise
to a mean square height difference

g(x) = 〈[h(x) − h(0)]2〉 (31)

behaving asymptotically as lnr, x = |x|. This logarithmic roughnessis quite similar to that
of a surfacein equilibrium (above the roughening temperatureTR).

† The relationship of the two approaches is not obvious; usually it is based only on comparison of results for
scaling exponents, but in particular cases a continuum equation can be obtained from a master equation for discrete
models (see P̌redota and Kotrla (1996) and references therein).
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A non-linear perturbation of the EW equation is the Kardar–Parisi–Zhang (KPZ)
equation (Kardaret al 1986):

∂h

∂t
= ν ∇2h + λ(∇h)2 + η. (32)

The KPZ equation generates surfaces whose roughness may be stronger than logarithmic,
i.e. of power-law form. In 1+ 1 dimensions the scaling exponents of this equation have
been exactly calculated by Kardaret al using the renormalization group approach (ζ = 1/2,
z = 3/2). In higher dimensions exact values of the exponents are not known but there are
numerical results (see e.g. Barabási and Stanley (1995)); what the upper critical dimension
is remains an open question.

If the EW equation is perturbed by aperiodic forcefavouring theinteger levels(i.e. if
the crystal structure is taken into account) the Chui–Weeks (CW) equation is obtained (Chui
and Weeks 1978)):

∂h

∂t
= ν ∇2h + y0 sin 2πh + η (33)

and the surface tends to becomesmoother. Thus a surface obeying the CW equation either
is smooth, or if it is rough cannot be more than logarithmically rough†.

An important class of equations are theconservingequations of the form

∂h(x, t)

∂t
= −∇ · J [∇h(x, t)] + η(x, t). (34)

J is the surface current depending on the derivatives ofh and possibly onh itself. The EW
equation is conserving but the KPZ equation is not. A linear diffusion equation is obtained
for J = −K ∇ ∇2h(x, t). It can be exactly solved and exponents areζ = (5−d)/2, z = 4.

With the particular choice

J = −K ∇∇2h(x, t) + λ ∇(∇h)2 (35)

whereJ is the gradient of the right-hand side of the KPZ equation, we obtain the so-called
conserved KPZ equation. This equation has been recently studied (Tu 1992, Krug 1996),
but its properties are still not completely known.

Very interesting developments have been presented by Maritanet al (1992). They write
stochastic equations in surface coordinates (instead of Cartesian coordinates): this allows
the study of a more general surface, involving overhangs.

4.1.3. Discrete models.There has been much interest in the study of kinetic roughness in
various discrete growth models, which were motivated by different physical situations. The
pertinence of various models to universality classes has been identified.

The simplest model belonging to the EW class was formulated by Family (1986). In
many growth models (ballistic deposition, the restricted SOS model, the Eden model surface)
the KPZ behaviour was observed and the results agreed with the concept of universality—a
small change in the growth rules did not cause a change of exponents. Physically this
behaviour is observed in situations where lateral correlations are important; this kind of
growth is not volume conserving. The EW class, in contrast, corresponds to simple
conserved growth, leading to a relatively smooth surface. The original example of this
physical situation is the process of sedimentation of small material particles in a liquid
caused by gravity (Edwards and Wilkinson 1982).

† However, Rost and Spohn (1994) showed that a KPZ term can be generated by the interplay of the periodic
potential and the driving force. There appears to be an open problem here.
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Figure 4. The example of time evolution of the surface profile in the one-dimensional Wolf–
Villain model.

Recently much effort has been devoted to the identification of a possible universal
behaviour of MBE growth (where surface diffusion is a central phenomenon). Several simple
discrete models have been suggested (Wolf and Villain 1990, Das Sarma and Tamborenea
1991, Lai and Das Sarma 1991, Kotrlaet al 1992, Das Sarma and Ghaisas 1992), in which a
particle relaxes only immediately after deposition and then remains immobile for the rest of
the simulation. Surfaces in these models may be very rough or even unstable. An unrealistic
feature of these models is that surface profiles with very large local slope can develop. The
example of evolution of the surface profile in one of them, in the Wolf–Villain model (Wolf
and Villain 1990), is shown in figure 4.

The asymptotic behaviour in models for MBE was puzzling; now the situation can be
summarized as follows (Siegert and Plischke 1994a, Krug 1996, Kotrla andŠmilauer 1996).
There are two generic situations: either the growing surface is relatively smooth and the
growth process belongs to the EW class, or there is instability. A new feature which has
been found in these models is anomalous scaling, in which a new independent exponent
appears, and in some models also multiscaling has beem observed (for more details see
e.g. Krug (1996)). What the real explanation of these effects is and how generic they are
remain to be understood.

Another interesting problem is the interface motion in a disordered medium, and
the depinning transition caused by the driving force (for review see e.g. Barabási and
Stanley (1995)). The universal behaviour of growth in systems with two or more species
(e.g. systems with ‘ferromagnetic’ or ‘antiferromagnetic’ interactions) is at the moment an
open problem (P̌redota 1995).
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4.2. Dynamic roughening

In the context of the Chui–Weeks equation, Nozières and Gallet presented a theory
which in principle solves the growth problem in the neighbourhood of the thermal
roughening transition (Nozières and Gallet 1987). The Nozières–Gallet theory is based
on a renormalization scheme (applied to the CW equation and stopped at the appropriate
stage, depending on the strength of the disequilibrium1µ) in the treatment of fluctuations at
the crystal–fluid interface. Such a theory was immediately applied to the special case of the
solid–superfluid interface in4He, whose roughening, discovered independently by Israeli,
French and Russian groups (Avronet al 1980, Balibar and Castaing 1980, Keshishevet
al 1981), was experimentally studied, in the non-equilibrium case, by Galletet al (1987).
Further (theoretical) contributions on this subject were presented by us (Levi and Kotrla
1993, Kotrla and Levi 1994) and by Giorgini and Bowley (1995).

Let us briefly describe the physical situation near the roughening transition (for further
details, see Levi and Kotrla (1993)). In the CW equation the termν ∇2h describes
propagation over the surface of the information concerning the local levelh. A new layer
is completed in the timeτ = az/v, and in this time the information is propagated to a
distancel ∼ √

2ντ . As long as this distance is large enough—in fact, as long as it is
larger thanξ , theequilibrium correlation length on the surface—the surface grows layer by
layer, according to the sameBecker–D¨oring laws as hold at lower temperatures. But near
roughening (as well as above),ξ diverges and, as soon as it is larger thanl, the information
can no longer travel as far asξ before a new layer is created; everything occurs as ifξ were
infinite: the surface roughens (dynamic roughening) and the growth law becomes similar
to the Wilson–Frenkel law; in particular, the growth velocity becomes linear in1µ. The
result is an effectivelowering of the roughening temperature as a function of1µ.

Here we present an elementary treatment of this effect, even simpler than that given
in our previous work (Levi and Kotrla 1993). According to classical nucleation theory (as
applied to crystal growth by Becker and Döring (1935)) a growth nucleus, or island, ofN

adatoms has a (Gibbs) free energyG made up of two terms: a negative term−N 1µ and a
positive term, related to the energy cost of building the step that serves as island boundary,
given byNbεs , whereNb is the number of boundary atoms andεs is the step free energy per
atom. If the island is convex,Nb is of the formNb = c

√
N†, where e.g.c = 4 for a square

island. G is maximal for thecritical nucleus, i.e. for N = N∗ = [cεs/(21µ)]2, and the
maximum, thenucleation barrier, is G∗ = c2ε2/(41µ). If, however,l is relatively small,
the surface behaves as if it had a finite sizel and, in particular, ifl is less than the size of the
critical nucleus, the latter does not form: the area of the largest islands is of orderl2, which
also implies alowering of the nucleation barrier. This is irrelevant at low temperatures,
whereξ � l, but becomes important just belowTR (aboveTR the effect is irrelevant again,
since in the absence of a nucleation barrier the surface grows linearly in1µ, as if it were
rough: this is irrelevant if it is indeed rough even at equilibrium). It should be recalled
that ξ and εs are inversely proportional to each other (see e.g. Mazzeoet al (1992)), so
no explicit reference toξ is really necessary‡: the relevant quantities in our problem are
x = βεs , y = β 1µ. The growth velocity may be written as the ‘rough’ (or Wilson–Frenkel)
growth velocityv0 divided by a factor,ω > 1, related to the nucleation barrier, which, in

† The islands tend to be convex in order to reduce both the step free energy, by reducing the boundary length, and
the kink free energy, by reducing the number of kinks. As a consequence, we shall disregard the kink contribution
altogether. At high disequilibria this may not be correct, since the island does not live undisturbed long enough
to optimize its shape.
‡ It will turn out that the critical value ofξ is relatively small,ξ/a = √

2e3/2/3 = 2.11.
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the presence of this ‘dynamic roughening’ effect, is not fixed but depends, in turn, on the
size of the effective critical nucleus, i.e. on the growth velocity, i.e. onω = v0/v. The
characteristic lengthl (which may be identified with the size of the relevant island) can be
found from the Edwards–Wilkinson or Chui–Weeks equations asl = √

(2ντ), whereν, the
coefficient of the Laplacian term in the stochastic equations, is of the order ofav0, andτ

is the time for growing one layer,a/v. Thenl/a = √
(2ω).

Figure 5. Dynamic roughening as a first-order transition described by equation (36), for a
dimensionless disequilibriumy = 0.03. Chain curve (x = 0.36): the equation has three
solutions, of which the physical one, marked BD, corresponds to slow, Becker–Döring-like
growth. Solid curve (x = 0.34): the slow solution has disappeared altogether and the growth
takes place according to a smallσ -value, i.e. to fast, Wilson–Frenkel-like growth, corresponding
to the point marked WF.

This leads to a self-consistency equation of the type

σ = epxσ−qyσ 2
. (36)

Here ω = σ 2 and (using the famous ‘Kolmogorov cubic root’—see above—and taking
c = 4) p = 2

√
2/3, q = 1/3. This equation always has solutions, but it is physically

interesting only if the solutionσ is less than the value,σ ∗ = √
(2x/y), corresponding to

the maximum of the right-hand side (meaning an effective reduction of the critical nucleus
size). Let us fixy (i.e. essentially the disequilibrium). Then for largex there is only
one (Becker–D̈oring-like) solution, but below a certain value ofx (provided thaty is less
than a critical valueyc = 3e−3/2 = 0.0747) there are two more solutions (corresponding
to faster growth). Finally, beyond anotherx-value x = xNG the slow mode disappears
altogether and a jump is unavoidable to a faster (Wilson–Frenkel-like) growth mode. We
take this as an indication that the Nozières–Gallet effect has set in (see figure 5).xNG < xc,
where the critical valuexc equalsxc = 3e−3/2/

√
2 = 0.473, and for the correlation length

the critical value is the inverse,ξc/a = 2.11 (corresponding to a rather low temperature
T ∼ 0.55TR). Since this criticalξ is not very long, the jump in growth rate should really
take place in the interesting cases. If, on the other hand,y > yc, the growth should go
to a faster regime smoothly, ‘supercritically’ (this is understandable since at such strong
disequilibria the critical nucleus† is small anyway and even the Becker–Döring growth is

† The occurrence of the wordcritical with two different meanings is unfortunate, but unavoidable here.
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already fast). The possibility of genuine critical phenomena in the neighbourhood of such
a growth critical point is worth investigating.

5. Kinetic BCSOS and related growth models

Our research group has tried, whenever possible, to use the well knownsix-vertex modelof
statistical mechanics, which was exactly solved, around 1967, by Lieb and others (see the
review of Lieb and Wu (1972)), and has proven so useful (viavan Beijeren’s mapping(van
Beijeren 1977)) for studying the statistical mechanics of surfaces. Our first study, however,
did not make use of van Beijeren’s mapping: we used a different mapping, where thelines
appearing in Lieb’s representation of the six-vertex problem (where in each vertex only the
downward and leftward arrows are marked) are directly identified withsurface steps(see
below (Garrodet al 1990)), and, by this representation, we treated an extremely simple case
of growth by step flow. Subsequently, however, we reverted to van Beijeren’s mapping in
order to have a somewhat richer growth model (see below).

5.1. Mapping of crystal growth onto the six-vertex model

The six-vertex model (Pauling 1935) is the best model to describerougheningin equilibrium.
Indeed, van Beijeren in 1977 was able to map his BCSOS (body-centred solid-on-solid)
model (van Beijeren 1977) onto the six-vertex model, which had been exactly solved by
Lieb et al ten years earlier. The roughening transition exists and corresponds in the mapping
to the antiferroelectric transition of the six-vertex model (a very weak,∞-order transition).

The six-vertex model is exactly solvable (Lieb and Wu 1972). The partition function is
obtained from the transfer matrix, whose eigenfunctions are given by theBethe ansatz.

The model is isomorphic to the Heisenberg–Ising chain (Yang and Yang 1966).
The properties of the model depend on six parameters, the energies of the six vertices,

εj , j = 1, . . . , 6, and onβ = (kT )−1. A considerable simplification occurs in thesymmetric
case, whereε2 = ε1, ε4 = ε3, ε6 = ε5. Then all properties depend only on two parameters:

x = eβ(ε5−ε1) y = eβ(ε5−ε3). (37)

In the (x, y) plane four phases are present:

(a) two ferroelectric phases, one forx > 1, y < x − 1 and the other fory > x + 1;
(b) an antiferroelectric phase forx < 1, y < 1 − x; and
(c) a disordered phase at high temperature (|x − 1| < y < x + 1).

Important special cases are:

(i) the KDP model (ε3 = ε5 = ε > 0, ε1 = 0) (ferroelectric) (Slater 1941); and
(ii) the F model (ε1 = ε3 = ε > 0, ε5 = 0) (antiferroelectric) (Rys 1963).

In both caseskTc = ε/(ln 2) (but the transition is offirst order for KDP, of infinite
order for F).

Here the six-vertex model is used out of equilibrium, to describe growth, according to
two different mappings:

(1) the line mapping (model I);
(2) van Beijeren’s mapping (models II and III).

These mappings are explicitly shown in figure 6. (Still other mappings were presented
in the literature (Gwa and Spohn 1992a, b, Hontinfinde and Touzani 1995), but they refer
to growth in 1+ 1 dimensions, and are therefore very different.)
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Figure 6. Mappings of surface levels onto the six-vertex model. (a) The vertices. (b) Line
mapping: only the arrows pointing down and to the left survive; the lines thus arising are
interpreted as surface steps. (c) van Beijeren’s mapping: the levels are such that, for any pair
of atoms, the higher-level atom is found to the right of the arrow.

5.2. Model I: step flow

Line mapping. The usual representation of the six-vertex model (arrow representation)
places arrows on the bonds of a square lattice, in such a way that at each lattice point two
arrows enter, and two arrows exit (the ice rule). There are six ways to satisfy the ice rule,
and thus the six vertices are formed.

However, an equivalent (and in many cases more useful) representation is theline
representation, where only the arrows pointing down and to the left are marked. The union
of such arrows formslines that go across the plane in the south-west direction.

In the line mappingthese lines, occurring in the line representation of the six-vertex
model, are directly identified withsteps on a surface(Garrodet al 1990). These steps are
all of the same sign: the resulting surface is thus avicinal surface, whose growth takes
place bystep flow. The level of the surface increases in the south-east direction. When a
step moves in the north-west direction, the upper terrace widens at the expense of the lower
terrace, and the crystal grows.

In order for the mapping to be one to one, only one type of step (single steps) are
permitted. Double and multiple steps are eliminated by sliding the crystal layers in the
south-east direction by an amount proportional to their level. This procedure, however, also
eliminatesstep crossing(corresponding to vertex 2 in the line mapping). So only vertices
1, 3, 4, 5, 6 survive and the six-vertex model becomes afive-vertex model(Garrod 1991,
Gulácsiet al 1993, 1994)!

Conservation rules.Consider a square table of sideN . Let A be the total length of
horizontal line segments,B that of vertical line segments, and letNi be the number of
vertices of typei. Then during the growth processA andB are conserved, and

N4 + N5 = A (38)

N3 + N5 = B (39)

N1 = L2 − A − B. (40)

Master equation.(A, B, N1) define aclassof configurations.
Configurations differing from each other only by translation (with cyclic boundary
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conditions) form asubclass. During the growth process the class is conserved, but the
subclass is not.

Let Pm be the probability for the system to be in a configuration belonging to subclass
m within a class. Then themaster equation

dPm

dt
= −(pmC + qmE)Pm +

∑
n

(CMmn + EM ′
mn)Pn (41)

holds, whereC, E are thecondensation (sticking)andevaporation coefficients, pm, qm are
the numbers of condensation and evaporation sites in them-configurations, andMmn, M

′
mn

the numbers of waysm-configurations are obtained fromn-configurations by sticking and
evaporation processes respectively.

The main results (obtained either by solving the master equation directly, or by Monte
Carlo simulations) are as follows. After atransientphase, asteadysituation is established.
Starting from anequilibrium situation (i.e. from a situation where all configurations in a
class areequiprobable), under growth conditions (C > E) the growth ratedecreases, so
the steady-state growth rate is slower than the initial, equilibrium growth rate. This is due
to the fact that the configurations corresponding to fast growth grow themselves out of the
picture, leaving a prevalence of evaporation configurations.

5.3. Model II: deposition and desorption

van Beijeren’s mapping.Model II (Kotrla and Levi 1991, 1992) is similar in some respects
to model I, but it makes use of a different mapping onto the six-vertex model.

The line mapping is limited, because growth takes place solely bystep flow. We are
also interested in thenucleationof new steps. To study this it is better to revert to van
Beijeren’s mapping (for the (001) face of a bcc crystal), where an arrow indicates a level
difference between two neighbouring atoms, thehigher atom lying to theright of the arrow
(van Beijeren 1977).TemperatureT and disequilibrium 1µ were explicitly introduced,
letting the system evolve according to a generalizedGlauber kinetics:

C = eβ 1µ

eβ 1E + 1
E = 1

eβ 1E + 1
(42)

where1E is the change in surface energy.
On a finite, square table of sideN , the model was solved by Monte Carlo simulation (or

even analytically, for extremely small sizes). The boundary between (two-dimensional)layer
growthand (three-dimensional)continuous growthis sought finding themaximal growth rate
as T varies. For increasing1µ it bends to theleft (Kotrla and Levi 1991). This means
that increasing disequilibrium favours three-dimensional growth. Indeed, forT < TR and
1µ small, plotting the surface levelh as a function of timet the successive layers are
well recognized as plateaus; but as1µ is increased, the plateaus become progressively
smeared out andh(t) tends to become a straight line, indicating continuous growth. For
large disequilibrium and highT the growth rate approaches the Wilson–Frenkel limit (4).

The surface roughness in this growth model was investigated. The results indicate the
following (Kotrla and Levi 1992).

(1) For any T andany 1µ > 0 the surface isrough (i.e. 〈1h2〉 divergeswith L).
(2) For 1µ small (and for all1µ if T is low) the roughness is logarithmic.
(3) For T < TR this behaviourtends to a universal limitas1µ → ∞; see figure 7.
(4) For T > TR a crossover occurs from logarithmic topower-lawroughness:

〈1h2〉 ∼ Lζ (43)
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Figure 7. The dependence of the roughness on the sizeL and1µ at the temperatureT = 0.7TR

in model II.

Figure 8. As the previous figure, but at the temperatureT = 2TR .

(see figure 8; for large1µ, ζ depends only onT (not on1µ), increases withT and tends to
≈0.35 asT → ∞: this value appears to agree with the value ofζ for the KPZ universality
class).

(5) For any value of1µ (except 1µ → ∞) the power-law behaviour reverts to
logarithmic for largeL. The values ofL at which this happens increase with1µ: this
behaviour obeys ascaling law.
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5.4. Model III: growth with diffusion

Crystal growth in the kinetic BCSOS model was considered in the above-mentioned
studies (Kotrla and Levi 1991, 1992, Hontinfindeet al 1996) without diffusion, i.e. in an
oversimplified version of the model where the growth process is reduced to a competition
between sticking and desorption. Many of the most relevant effects which have recently
attracted the attention of experimentalists and theoreticians alike are, however, related to
diffusion and to barriers hindering it (Schwoebel and Shipsey 1966, Kunkelet al 1990).
It is necessary, therefore, to include diffusion in the treatment (as was done many years
ago in a simpler context by Gilmer and Bennema (1972b)): this was done most recently
in Genova for the BCSOS model (Levi and Tartaglino 1996). The main advantages, with
respect to older work, are the availability of present-day, faster computers and the use of
the six-vertex model, which ensures e.g. an exact knowledge of the roughening temperature
TR.

In model III, diffusion is introduced explicitly in the description of the growth process.
Actually, it is important to introduce at least two diffusion moves, with different activation
energies: in the former the mobile atom remains at the same level; in the latter the atom
descends (or climbs) a step (in the BCSOS model this move is similar to the knight’s move
in chess).

We recall the structure of the BCSOS model (van Beijeren 1977). The (001) surface of a
body-centred cubic lattice is considered. The lattice comprises two sublattices (corner atoms
and centre atoms), so the nearest neighbours of every atom belong to the other sublattice,
with a very strong interactionJ0 which, in order to enforce the SOS condition exactly, is
actually taken to be infinite in van Beijeren’s theory. The next-nearest neighbours, on the
other hand, belong to the same sublattice: the corresponding interactionJ is the relevant
energy scale for the model.

Model II above was a simple extension of van Beijeren’s BCSOS model to non-
equilibrium situations. Model III is a further extension where diffusion is taken into account;
with model III we shall be forced, however, to relax van Beijeren’s conditionJ0 → ∞: we
shall takeJ0 larger thanJ , but finite. This is necessary, since forJ0 → ∞ no evaporation is
possible; moreover, equilibrium takes place at a chemical potentialµ → −∞, i.e. for zero
vapour pressure, so the vapour is replaced by a vacuum, and no deposition is possible. But
if J0 is finite, the level difference between neighbouring sites is no longer strictly forced to
be 1: level differences of 3, e.g., become possible. Although such level differences are not
considered here, they have been studied elsewhere, leading to a 14-vertex model (Barbero
et al 1996).

A Monte Carlo simulation is performed. Two regimes are considered: in regime
I, at low disequilibria1µ, diffusions are far more frequent than either depositions or
desorptions; in regime II, corresponding to high disequilibria, on the other hand, desorption
may be neglected altogether and the growth behaviour results from the competition between
deposition and diffusion.

Here we focus the attention predominantly on regime I. Although in such a regime,
because of their rarity, the adsorption–desorption processes cannot be directly simulated
(between two such events something like 108 or 109 diffusion events may take place, which
would lead to impossibly long simulation times), it is possible, nonetheless, to estimate the
adsorption and desorption rates by counting the sites active for each process. This leads to
an interesting and to some extent unexpected result: regime I splits into two rather different
subregimes (Ia and Ib). The analysis of the physical situation is best conducted in terms
of the coverage2: the diffusion processes drive the surface topartial equilibrium, without
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changing2.
At complete equilibrium the desorption and adsorption rates are such that the surface

tends to adsorb or lose atoms depending on2. A partial growth rateGp(2) = S(2)−E(2)

is defined, different from zero even at equilibrium. For low coverages, since the surface
is essentially flat with a few atoms or small clusters weakly bonded on it, evaporation is
favoured over deposition, soGp < 0. When the coverage is close to 1, on the other hand,
the interface looks like a flat surface with a few holes on it. Sticking is favoured: in fact,
when more than half a layer is deposited (2 > 1/2), Gp(2) > 0.

The effect of switching on the disequilibrium is to multiply the adsorption probability
by exp(1µ/kT ), whereT is the temperature, while the desorption probability (at least for
the moderate disequilibria corresponding to regime I) remains essentially unchanged. In
subregime Ia, next to equilibrium, there are still ranges of2 for which desorption remains
more probable than adsorption. This fact creates abottleneck, which blocks the growth
until an important fluctuation overcomes the block: in other words, there exists a nucleation
barrier. In subregime Ib, on the other hand, the disequilibrium is so great that for any
coverage2 the adsorption probability is larger than the desorption probability: in this case
the growth becomes continuous in time (although still layer by layer).

Figure 9. The roughness behaviour of model III, From the bottom to the top the graphs
correspond to increasing disequilibria:1µ/ε = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2 and 5
respectively.

In contrast to that of model II, the roughness behaviour of model III is rather
complicated, and cannot be represented by a simple functional dependence ofw2 on size.
There is a crossover, instead (see figure 9), from a small-scale to a large-scale behaviour,
this crossover occurring earlier for larger disequilibria.
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6. Unstable growth

6.1. Dendritic growth

The Mullins–Sekerka instability(Mullins and Sekerka 1964, Langer 1980) arises whenever
a protuberanceof the crystal, extending into fluid regions whereT is lower, grows faster
than the rest. (For growth from vapour the protuberance must be bigger than a mean free
path!) Then planar growth is disrupted and a needle crystal is formed (the latter is called a
dendrite(from Greekδένδρoν, tree) because side branching nearly always occurs).

The instability is fought against by thesurface tensionγ which favours planar shapes;
but γ is only sensitive tolocal disturbances and cannot stop the growth ofbroad
protuberances.

Continuous theory.Needle crystals are treated as approximate paraboloids. Ivantsov
(1947), neglectingγ and solving the heat equation inparabolic coordinates, found a
simple functional relation between dimensionlessdisequilibrium1 = 1µ/1µc andPéclet’s
numberPe = cρv/2λ where: ρ is the radius of curvature at the tip,c and λ are the
specific heat and the thermal conductivity of the fluid, and where the critical disequilibrium
1µc equals32/cT (3 being the latent heat), and e.g. reduces, for vapour growth from a
monatomic gas, to 72/5βε2: i.e. 1 = 5/72q.

For 1 > 1 (hypercooling) there is no solution: nostationaryfreezing is possible. This
is because the fluid is so cold at infinity that the release of latent heat is not sufficient to
keep the interface at the melting temperature†.

For 1 < 1, Pe is found by inverting Ivantsov’s law:

1(Pe) = Pe ePe

∫ ∞

Pe

e−y

y
dy. (44)

For smallPe, 1, we have1 ≈ Pe(|ln Pe| − C) (C is Euler’s constant); for1 → 1, Pe

diverges as(1 − 1)−1. But Pe contains theproductρ timesv.
Introducing the surface tensionγ changes the dependence ofPe on 1 somewhat;

these changes, however, occur at rather lowPe values, which are seldom of interest
experimentally. In the most interesting range, Ivantsov’s law is well verified. There is
another problem, however: Ivantsov’s law is incomplete, in the sense that it gives onlyPe

(i.e. the productρv) while a complete solution of the problem requires calculating bothρ

andv, not only their product!
To obtain ρ and v separately we need another condition: the first formulation of a

condition of this kind, due to Langer, may be written (Langer 1980) as

σ = γ

n 1µc ρ Pe
= constant.

Subsequently, more careful analysis showed thatσ is not a universal constant, but depends
only on theanisotropyα. For small1 and for a square lattice,σ ∼ α7/4 (Ben Amar and
Pomeau 1986, Barbieriet al 1987)‡ and v ∼ [Pe(1)]2. Thus the velocityv is roughly
quadratic in1µ.

The latter results have been obtained in the last fifteen years or so via very subtle
mathematical analysis of the growth process. In the beautiful bookSolids Far From
Equilibrium (Godr̀eche 1991)§ two chapters, one by the Caroliet al (1991), and most

† Notice that nucleation requires approximatelyq−1 > 1
3 , while hypercooling occurs ifq−1 > 72

5 , i.e. at a
disequilibrium more than 40 times larger.
‡ For a triangular lattice 7/4 becomes 7/6 (Gliozzi et al 1994).
§ In general, the reader of the present article may find useful to consult that book, where many of the subjects
considered here are discussed in depth.
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Figure 10. A schematic phase diagram in the (T , 1µ)-plane. In this figure the transitions
between layer-by-layer growth with and without a bottleneck for nucleation and between layer-
by-layer and three-dimensional growth are evident. Two hyperbolae,q0 = constant (whereq0 is
an approximation forq obtained by replacing the step energy per atomε by a constantε0), mark
the onset of nucleation and hypercooling respectively. The Ehrlich–Schwoebel transition from
three-dimensional growth at lowT to layer growth at higherT is also shown. The dendritic
and hypercooling modes actually depend not only onT and 1µ, but also on the boundary
conditions.

especially one by Pomeau and Ben Amar (1991) deal extensively with these problems. In
the presence of diffusion or heat transport (in the fluid, or in the crystal, or in both), the
growth of a non-planar surface is a highly non-linear problem, as already stressed in the
nineteenth century by Gibbs and Thomson. The non-linearity comes from the presence of a
term containing thetotal curvatureK = ρ−1

1 + ρ−1
2 (whereρ1 andρ2 are the two principal

radii of curvature), a notoriously non-linear object in geometry†. The Gibbs–Thomson
equation gives the interface temperature as

Tint = TM − γ TM

ρs3
K (45)

whereρs is the crystal density,γ is the interface free energy and3 is the latent heat.
It is appropriate to sketch at this point an overall, schematic phase diagram for growth

(figure 10).

6.2. Cluster growth

Since Witten and Sander introduced their fortunate diffusion-limited aggregation (DLA)
model (Witten and Sander 1981), the literature on the subject has developed enormously.
The main reason for this is that the DLA model is the simplest tool for generating random

† Similarly, the presence of non-linear space-time curvature makes general relativity such a difficult theory,
although the scalar curvature reduces in two dimensions to the Gaussian curvature, not to the total curvature.
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fractals: of course deterministic fractals, such as the Sierpiński gasket, had been known of
for a long time, but, however elegant, were uninteresting as models of the physical world.
The Sierpínski gasket, e.g., is too simple; the Mandelbrot set, on the other hand, has a
fascinating chaotic nature, but is too complicated, and at the same time too deterministic,
to afford a hope of describing ‘natural’ fractals, from the leaves of a tree to the affluents
of a large river. Random fractals offered such a hope. Important connections were also
discovered with clusters occurring in critical phenomena or percolation problems (although
the properties were different in each case). The more important contribution of the DLA
model was probably that of furnishing aparadigm, within which the fractal properties of
natural or computer-generated objects could be studied, from the relatively simple overall
fractal dimension to quantities obtainable only via much subtler analysis.

It is out of question to discuss these problems here (see, for example, Vicsek (1989) or
Meakin (1988) for a thorough treatment). We wish, however, to consider cluster growth from
the same point of view as we have considered crystal growth in the remainder of this paper:
i.e. in terms of physical (thermodynamical) parameters—temperatureT and disequilibrium
1µ in the first place. The clusters which we are going to consider, therefore, must in some
limiting case (1µ = 0) be in equilibrium with the environment; hence they must be able
to compensate growth by evaporation or dissolution, and hence a double DLA-like process
must be involved. Such a double DLA process was first introduced (as were many other
things in statistical mechanics) by Kadanoff (1985).

Let us first recall ordinary DLA, as was first proposed by Witten and Sander (1981).
DLA is a growth process, taking place in a computer. The growth starts from a pre-existing
germ, placed at the origin. In the simplest case the simulation is two dimensional.Atomsare
sent in sequentially from the circumference of a large circle, having the germ at its centre.
Each atom performs arandom walkin the plane; finally either it reaches a site neighbouring
the growing cluster, in which case it sticks irreversibly to the cluster, or it reaches the outer
circumference again, in which case it is lost. In this way clusters are generated, possessing
a characteristically ramified appearance: the fractal dimension of DLA clusters, as obtained
numerically, is 1.71± 0.01 (Meakin 1983)†.

DLA growth is irreversible and, from our point of view, corresponds to1µ → ∞. In
order to allow for finite disequilibria, Kadanoff introduced a very simple modification of
DLA, which he calls apedestrian model. Two competing processes are taking place: one
process is ordinary DLA, while in the other process atoms detach from the cluster, perform
again a random walk and either stick to the cluster at another point or are lost. A modified
version of this model was studied in detail by Gliozziet al (1994). The work of Gliozziet
al was addressed to studying the temperature and disequilibrium dependence of thegrowth
morphologyof two-dimensional clusters (see figure 11).

As pointed out by Shochetet al (1992a, b), the problem of interfacial pattern formation
is not yet solved. It turns out that the so-calleddense-branching morphology(DBM),
characterized bytip splitting, is the generic growth mode when the interfacial tension is
isotropic, whereas anisotropy is necessary to stabilize dendrites (Ben-Jacob and Garik 1990,
Ben Amar and Brener 1993) (see above). However, the DBM can appear even if anisotropy
is present (Saito and Ueta 1989, Ben-Jacob and Garik 1990, Shochetet al 1992b).

In a very interesting article, Saito and Ueta (1989) described the morphology of growing
two-dimensional clusters by means of a simulation, where the solid was surrounded by an
actual vapour. They started from the equilibrium shape of a little two-dimensional crystal,

† Theories trying to prove that it must be 5/3 = 1.67 (Turkevich and Scher 1986) were not accurate enough;
more precise and convincing results have been obtained more recently by Erzanet al (1995).
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Figure 11. Clusters grown according to the procedure of Gliozziet al for different temperatures
and disequilibria.J = strength of the molecular bond;β = 1/kBT . A tip-splitting transition
takes place, for temperatures between 0.25J/kB and 0.33J/kB , from the dendritic to the dense-
branching morphology.

which for the square lattice geometry is known, in terms of the exactφ-dependence of the
boundary tensionγ , from work by Rottman and Wortis (1981) (for an extension to the
triangular lattice see Zia (1986)). Using an actual vapour instead of the random walk of
single atoms allows one to study collective effects, in particular the depletion zone in the
immediate environment of the growing cluster.

Shochetet al studied the growth morphologies in terms of physically significant
parameters (Shochetet al 1992b). The same was done by Gliozziet al (1994), who
specifically applied the analysis to the growth of clusters of the gel phase at the expense of
the fluid phase in Langmuir monolayers. In these works the physical parameters areT and
1µ. The role of disequilibrium is obvious; temperature, on the other hand, occurs indirectly,
via theT -dependence ofanisotropy. Gliozzi et al found, at a rather well defined temperature
(or anisotropy), a morphology transition of the tip-splitting type, from the dendritic to the
dense-branching morphology. Interestingly, even for large disequilibria and (relatively) high
temperatures, the clusters generated in this way (contrary to what happens for simple DLA)
are not ordinary fractals. Rather, they belong to the typology offat fractals (Vicsek 1989),
i.e. their measure, when measured with rulers of lengthl, is given by

M(l) = M(0) + Alγ (46)

(for ordinary, or thin fractals, M(0) vanishes). A further development in terms of the
description of cluster growth in Langmuir monolayers took into account the important
effects of long-range interactions (Indiveriet al 1996a, b, Pastor-Satorras and Rubı́ 1995),
which have a destabilizing influence even in thermodynamic equilibrium (McConnell 1991,
Vanderlick and M̈ohwald 1989).

A fairly complete analysis of morphology transitions in the (disequilibrium, anisotropy)-
plane was presented by Breneret al (1992), leading to the identification of four distinct
morphologies which they call compact dendrite, fractal dendrite, compact seaweed, and
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fractal seaweed (whereseaweedindicates the DBMs).
In Langmuir monolayers, clusters of the gel phase are seen to grow with peculiar

asymmetries, whenever the molecules possess chiral properties (Rietzet al 1993) (which
affect both the diffusion process through the fluid and the process of attachment, especially
when impurities are present (Pomeau 1987)). Other asymmetries may arise simply from
the ordering of the hydrophobic tails in one direction, which determines in that direction a
weaker dipolar repulsion or even an attraction. These problems are currently under study.
However, even more important potentially will be the application of the above-mentioned
methods to the growth of metal clusters on metals: such clusters exhibit very diverse forms,
from compact to ramified, fat-fractal shapes (Hwanget al 1991), depending, as Bartelt and
Evans (1994) have shown in an interesting paper, on the ratio between the rate of arrival
of new atoms from the outside and the rate of diffusion along the periphery of the cluster.
An intermediate case between Langmuir monolayers and metal adsorbates is that of self-
assembled structures of, e.g., thiols on gold (Camilloneet al 1994), which have recently
been the object of very interesting studies.

6.3. Unstable MBE growth

It was found recently that MBE growth on a singular surface (i.e. a high-symmetry crystal
face) is unstable. The three-dimensional growth in this case has a special form: pyramid-like
structures (mounds) are formed on the surface and as time proceeds they increase and merge;
the average size of mounds continues to grow all the time. This unstable-growth mode was
first predicted by Villain (1991), and later was seen in computer simulations of a simple
SOS model with Glauber dynamics governed by a Hamiltonian with a term

∑
〈i,j〉 |hi −hj |4

(Siegert and Plischke 1992, 1994a), of the Wolf–Villain model (cf. subsection 4.1) in
higher dimensions (̌Smilauer and Kotrla 1994), and of the full diffusion model with the
Ehrlich–Schwoebel barrier (Johnsonet al 1994, Šmilauer and Vvedensky 1995, Siegert
and Plischke 1996) as well as in numerical solutions of the Langevin equations (Johnson
et al 1994, Siegert and Plischke 1994b, Stroscioet al 1995). This growth mode has
been recently observed experimentally in various systems: GaAs/GaAs(001) (Johnsonet al
1994), Cu/Cu(001) (Ernstet al 1994), Ge/Ge(001) (van Nostrandet al 1995), Fe/MgO(001)
(Thürmeret al 1995), Fe/Fe(001) (Stroscioet al 1995), Rh(111) (Tsuiet al 1996).

The existence of the instability observed in the above-mentioned experiments is
attributed to the Ehrlich–Schwoebel (ES) barrier which suppresses interlayer transport see
above. Let us recall the argument for that (Villain 1991, Johnsonet al 1994). In MBE the
surface height (measured in the comoving frame of reference) obeys a conserving equation
(34) whereJ is the surface current which is a function of the derivatives of height andη

is the shot noise due to the fluctuations in the incoming particle beam. The current can be
written in the form

J(x, t) = j[∇h(x, t)] + K ∇∇2h(x, t). (47)

Here theK-term represents the leading contribution to the equilibrium diffusion current
(Mullins 1957, Herring 1957) and tends to smoothen the surface, andj is a non-equilibrium
tilt-dependent contribution. In the case of a high-symmetry surface for small fluctuations
of ∇h(x, t) one can assume (Villain 1991)j(x, t) = C ∇h(x, t). Let us assume for
the moment that the ES barrier is infinitely high, i.e., no adatom can jump downwards at
the step edge and all adatoms remain on the upper terrace. Then an adatom on a terrace
preferentially sticks at the ascending step. This means that the current has the same direction
and sense as∇h, i.e., the coefficientC is positive and equation (34) is unstable.
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Let us consider the growth of a vicinal surface with the tiltm, formed by a sequence
of steps. The traditional picture is that growth proceeds in the step-flow mode (Burtonet
al 1951). If nucleation is neglected, a train of steps proceeds uniformly across the surface
when atoms from the incoming beam land on adjacent terraces and diffuse to be trapped
at the step edges. It can be expected that in the presence of the ES barrier the instability
described above will be present, up to some value of the tilt.

A simple intuitive argument is as follows (the ES barrier being still infinite). If the
terrace sizel is smaller than the diffusion lengthld , then all of the adatoms reach the step
edge of the upper terrace where they are incorporated. The surface current is uphill with the
dependencej (m) ∝ 1/m on the tiltm = 1/l of the surface, and the growth proceeds in the
step-flow mode. If the terrace size is larger thanld (the slope is lower than 1/ld ) only some
of the adatoms will reach the step edge of the upper terrace. This fraction is approximately
ld/ l; thus the current isj (m) ∝ ld/ l = ldm. The current has a positive derivativej ′(m) for
small m and this leads to instability (a negative Laplacian in equation (34); see also Krug
et al (1993)).

Let us consider the question somewhat more closely. As was shown by Bales and
Zangwill (1990) in 2+ 1 dimensions ameandering instabilityof the steps arises (because
atoms are more likely to attach to already advanced parts of the step): the surface, although
stable across the steps, is unstable along them. Moreover, recently it was shown that even
in 1 + 1 dimensions the step-flow regime is really destabilized by island formation via
fluctuations (Krug and Schimschak 1995). This leads to metastability: the growth behaves
as stable for a timet2 that increases with increasing slopem (t2 ∝ m2). In 2+1 dimensions,
on the other hand, mounds indistinguishable from those obtained on singular surfaces evolve
(Rostet al 1996). Thus, the instability is present also on vicinal surfaces.

One is interested here not only in the existence of instability, but also in its temporal
evolution, which can also be measured experimentally. Two important quantities to follow
are the average mound size and the average slope of a mound. These characteristics can
be either measured directly or extracted from various correlation functions. The slope of
mounds in experiments is usually found to be approximately constant (Ernstet al 1994,
Johnsonet al 1994, Tḧurmer et al 1995, Stroscioet al 1995) but in some cases has been
observed to increase: the mounds become steeper (van Nostrandet al 1995, Ammeret al
1994, Albrechtet al 1993). The mound size increases with time according to a power law
with an exponentn, i.e., ∝ (time)n; different values of the exponentn have been measured
ranging from 0.16 (Stroscioet al 1995) to 0.5 (Ernstet al 1994).

Johnsonet al (1994) suggested a differential equation with the current interpolating
between the step-flow and unstable regimes

j(m) ∝ ml2
d

1 + (mld)2
(48)

where m = ∇h(x, t) and m = |m|. However, in this choicej always has the same
sense asm and all slopes are unstable, and deeper and deeper grooves are expected to
evolve. Huntet al (1994) studied the one-dimensional form of the equation (48) and found
coarsening (i.e. an increase of the lateral sizeR of perturbations),R ∝ tn, with n ≈ 0.22.

Siegert and Plischke have argued that, due to the lattice symmetry, the functionjα(m) (α
labels surface directions) should become negative beyond some characteristic valuem∗ of the
slope. Thenjα(m∗) = 0, (∂jα/∂m)|m = m∗ < 0 and the slopem∗ would be stable against
small perturbations (Siegert and Plischke 1994b). For example, if the growing surface has
average orientation{001}, then local high-symmetry surfaces like{110} or {111} cannot be
consistently described as vicinal surfaces; rather the symmetry requires the current to be
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zero for such orientations. Siegert and Plischke generalized equation (48) to the form

j(m) = Dm(1 − m2)

(1 − m2)2 + (mld)2
. (49)

This current is properly equal to zero on the two high-symmetry surfacesm = 0 andm = ∞
and is also zero at the intermediate inclinationm = 1. Integrating this equation in(2+ 1)D
they found slope selection and observed that pyramids continue to grow until only a single
pyramid remains in a finite-size system, and concluded that there is no scale selection in
the problem. In this situation the roughness exponent isζ = 1, and there is only one
exponentz (β = 1/z) and only one relevant length in contrast to the case for conventional
theories of kinetic roughness (cf. subsection 4.1). They measured the coarsening exponentn

using a slope–slope correlation function, and for equation (49) as well as for its anisotropic
modification they obtainedn ≈ 1/4 although they expected Lifshitz–Slyozov–Wagner-like
behaviour withn = 1/3 (Lifshitz and Slyozov 1961, Wagner 1961). They attributed this
difference to the importance of the constraint∇ × m = 0. They also suggested that this
coarsening process is similar to the domain growth problem and that the slope corresponds
to the order parameter in the domain growth problem. The current (49) is only a prototype
for the slope-selection mechanism, the current may have more zeros (the first one is stable,
the next can again be unstable). In reality the value of the selected slope can be much
lower—in fact in experiments with GaAs (Johnsonet al 1994) the angle was of the order
of degrees.

In order to explain the low value of the exponentn ≈ 0.16 observed for growth
in the Fe/Fe(001) system, Stroscioet al (1995) suggested that near equilibrium the
Mullins–Herring termK ∇ ∇2h(x, t) is absent and replaced it by a higher-order term
B ∇ ∇2 ∇2h(x, t). They have no special reason for including the sixth-order term, except
that it is the next-lowest-order linear term after the Mullins–Herring term. By numerical
integration of the Langevin equation (34) with

J = −B ∇ ∇2(∇ · m) + Cm − λm2m + σ ∇(m2) (50)

in (2+ 1)D they obtainedn = 0.18± 0.02. The second term in equation (50) is a destabil-
izing uphill current, the third is the term suggested by Siegert and Plischke, and the last term
was included in order to break up–down reflection symmetry. They argued that the exponent
n is insensitive to the presence or absence of the symmetry-breaking term but that this term
is essential for the agreement of the calculated morphologies with the experimental data.
It is clear that when both the Mullins–Herring term and the sixth-order term are present a
crossover fromn = 1/6 to n = 1/4 is expected with the crossover time given by the values
of corresponding coefficients.

A complementary approach to the study of Langevin equations is the study of
microscopic models by MC simulations. This allows the investigation of microscopical
mechanisms and of the dependence of growth on material and physical parameters. Johnson
et al (1994) observed the formation of mounds in simulations using the full diffusion model
with next-nearest-neighbour interaction (cf. subsection 3.3), which allows one to incorporate
the ES barrier (̌Smilaueret al 1993b). They noted that the instability is quite different from
the large instabilities seen in earlier theoretical work (Siegert and Plischke 1992) where
the slope of the structure increases without bounds, whereas for the FD model with the
ES barrier it was constant or possibly only slowly increasing in time. The surface profile
in earlier models contained deep grooves and the exponent for the time evolution of the
roughness was sometimes very high,β ≈ 1 (Kotrla andŠmilauer 1996).

Šmilauer and Vvedensky (1995) presented simulations of the full diffusion model with
the ES barrier and a transient mobility just after deposition of an atom, for various material
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Figure 12. Evolution of the surface morphology in a simulation of unstable epitaxial growth
(1000 monolayers on a 300× 300 lattice). Courtesy of PavelŠmilauer.

(EB , EN andEB) and physical (T , F ) parameters (cf. subsection 3.3), with the emphasis on
the early-time regime which is seen in experiments (see figure 12). Transient mobility was
modelled by an incorporation process (see subsection 3.3). Note that in this formulation
incorporation does not depend on the value of the ES barrier. They found that the average
mound size increases with time as a power law with the exponentn ≈ 0.19 to 0.26, and
depending on the model parameters the slope stays approximately constant or increases
according to a power law. They pointed out that there is competition between coarsening
and steepening of the mounds.

They also observed that the slope of the mounds is strongly affected by changing
the parameterRi . For Ri = 0 the slope was higher and was increasing with time. On
increasingRi , both the rate of steepening and the absolute value of the slope decreased. The
dependence onRi is actually the result of a combination of two effects. An incorporation
mechanism with largeRi reduces the number of atoms deposited on terraces, so the uphill
current due to the ES effect becomes significantly smaller. The incorporation mechanism
also directly contributes to the surface current. This partial current may be uphill (cf. Kotrla
andŠmilauer (1996)) or downhill depending on the local configuration. Statistically it leads
to contributions which change the observed slope. The absolute value of the slope increases
as the height of the step-edge barrier increases. AlthoughŠmilauer and Vvedensky did
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not observe any significant change of the slope with the temperature in their simulation,
the slope should also increase with decreasing temperature, as observed in experiments on
Cu(001) (Ernstet al 1994). Finally, their data also showed that the exponentn is larger for
lower step-edge barriers.

If there was only a sufficiently strong ES effect and nothing else, it would lead
to structures whose slopes would increase up to a very large value, where the SOS
approximation is not justified any longer. In order to have slope selection a counterbalancing
mechanism is needed. Such a mechanism can be introduced directly into the model in
different ways. An incorporation mechanism with parameterRi from the previous model
restricts the slope to the maximal value 1/Ri (a surface with a larger slope grows in a
step-flow-like mode already during deposition). The restricted SOS model (representing
constraints by lattice structure) could also be used, in order to limit the slope. Another
mechanism was considered by Siegert and Plischke (1996). In contrast to the work of
Šmilauer and Vvedensky (1995), they concentrated on the asymptotic behaviour in a similar
model (also in(2 + 1)D). They use the same representation for the ES barrier, but instead
of a transient mobility they introduce a slope-dependent downhill current generated during
deposition. They allow a fractionp of the deposited particles to immediately hop to a
nearest-neighbour column of lower height, if it exists. They use parameters which are far
from being realistic for real materials, but which were optimized in order to use small
system sizes(L 6 128) and still observe instability with a slope consistent with the SOS
approximation†. To have small system size is important from the numerical point of view in
order to reach the steady state in a reasonably short time, because the dynamical exponent
of these systems is large (z ≈ 4). Measuring the dependence of the surface current on
the tilt they found that the current has a zero even forp = 0, but for rather large slope
m ≈ 1.6. This is due to the particular implementation of the ES barrier in which a step of
height 2 leads to downhill current (Siegert and Plischke 1996). Forp > 0 the selected slope
was about 0.5. They found a coarsening exponentn ≈ 0.25, and for anisotropic diffusion
n ≈ 0.18.

A different approach was applied by Elkinani and Villain (1994). They proposed a
simplified quasi-deterministic model in(1 + 1)D. An advantage of this model is that the
computational time is greatly reduced and a systematic investigation of the effect of different
parameters is possible. These authors found that deep cracks form even for a small ES
barrier, but they form after a time which is very long if the ES barrier is small. They also
observed that in certain cases the roughness increases proportionally to time. The model
of Elkinani and Villain was further studied by Politi and Villain (1996). They found the
coarsening to become extremely slow after mounds reached a critical radius. The same
results have been obtained in a simple growth model with only post-deposition relaxation
instead of full diffusion (Kotrla 1996b). In this model coarsening is evident and there is
competition between coarsening and steepening. The coarsening behaviour strongly depends
on the probability of passing the ES barrier. For any finite value of the barrier there is a
crossover to slow coarsening and fast steepening. An example of the evolution of the
surface profile is shown in figure 13. Wavelength selection was found also in a different
model by Lanczycki and Das Sarma (1996).

At present, the situation can be summarized as follows. Pyramid-like growth is a non-
equilibrium effect due to a combination of the microscopic ES barriers and the breaking of
detailed balance by the pure deposition process (without desorption). During the growth

† As pointed out by Kruget al (1993) the Mullins–Herring term,∇2 ∇2m, suppresses the instability for small
enough system sizes. In the linear approximation equation (34) takes the form∂h/∂t = −ν ∇2h − K ∇2 ∇2h + η

and by Fourier transform it is easy to see that the growth process is stable for wavelengths smaller than 2π
√

K/ν.
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Figure 13. Coarsening and steepening of the surface profile in a simple relaxation model for a
small ES barrier.

three-dimensional features on the surface coarsen with a power-law dependence of size on
time. Various exponents have been measured in both experiment and simulation. The large
interval of observed exponents is probably due to crossover effects which necessarily appear
and may extend to rather long times, depending on the physical and material parameters.
Initially the tilt of the mounds is much smaller than the possible finally selected slope. Thus,
there will be a crossover regime with increasing slope. Since the steepening is related to
the coarsening, one can expect a crossover in the exponent for coarsening as well.

The study of very long times is difficult in both experiments and simulations; thus it
is not possible to draw firm conclusions yet. There are several things which remain to be
explained. At present it is not clear what determines the value of the exponentn nor why
the asymptotic value of the exponentn in theory is close to 1/4 (instead of 1/3 as in the case
of domain growth in magnets). No fundamental understanding of the qualitative difference
between domain growth in magnets and in MBE exists. It is also not clear whether the
asymptotic behaviour is always the same (t1/4?) or whether several ‘classes’ exist, as well as
what the explanation is of large values of the exponentn observed at intermediate times—
for example,n = 1/2 in an experiment on Cu(001) (Ernstet al 1994) orn = 1/3 in an
experiment on Rh(111) (Tsuiet al 1996). Finally, there are questions about the dependence
on physical and material parameters which are only partially clarified—in particular, that of
how to optimize the growth conditions in order to reach the slope-selection regime as fast
as possible.

In order to understand the growth of real materials more information on material
parameters—in particular, on the values of the ES barrier—is needed. These quantities
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are difficult to measure, but they can be obtained from MD simulations. For some materials
such studies have already been started† but clearly much more work is needed for materials
for which pyramid-like growth was observed. MD calculations can also help one to evaluate
the importance of post-deposition processes, such as transient mobility, the knockout process
and other elementary processes.

7. Outlook

Much progress has been made in the understanding of crystal growth, but much remains to
be done. The subject is extremely varied, and the method valid for one problem may not
be useful for another.

In terms of theory, one of the most important problems is still the roughness of a growing
surface, especially when1µ is finite. For 1µ → ∞ the surface is usually extremely
rough (and self-affine), and it can be adequately described in terms of the Family–Vicsek
parametrization (29); but for finite1µ the situation is quite different. In the absence of
diffusion, the process resembles that described by the Edwards–Wilkinson equation and,
indeed, if1µ is small the simulations (Kotrla and Levi 1992) show logarithmic roughness
(although at higher1µ a transition to power-law roughness may take place (Kotrla and Levi
1992)), but in the presence of diffusion the situation is more complex (Levi and Tartaglino
1996). A true theoretical analysis of these problems is still lacking. The behaviour nearTR

is quite important and not completely understood, although the ideas proposed by Nozières
and Gallet (1987) are clearly correct. Elementary discussions such as were given by Levi
and Kotrla (1993), as well as in the present paper, are not sufficient, but point to interesting
developments.

Turning to Monte Carlo simulations, the warnings of Müller-Krumbhaar (1979) are
still partly valid (indeed, the situation has not changed so much from his review to ours).
‘Most of the models’, he wrote, ‘only give a representation of the interface, not of the bulk
properties in the solid and nonsolid phases’. Indeed, this is still a limitation of many Monte
Carlo studies.

Nowadays, however, progress in both statistical mechanics (e.g., the application to a
wide class of surface systems of exact roughening theory) and computer science makes the
study of the growth of real systems feasible. This is the more urgent task. The ingredients
(such as the diffusion barriers) may be calculated using classical molecular dynamics—
see for example Ferrando and Tréglia (1996), Ferrandoet al (1996), Trushinet al (1996)
and references therein—or from first principles (e.g. by the Car–Parrinello (1985) method)
(Stumpf and Scheffler 1994). These data may then be used as input for a Monte Carlo
simulation of growth. This programme is now being implemented by several research
groups worldwide (including that of one of the authors in Genova), with good hopes of
success.

The cases of homoepitaxy and heteroepitaxy should be distinguished: the latter, although
more important for many applications, is more difficult, due to the elastic strains developing
because of lattice parameter (or crystal symmetry) mismatch, and, although some interesting
calculations are already available (Blandinet al 1994), will probably wait longer for
more thorough study. A typical characteristic of heteroepitaxy is the smallness of the
islands forming during growth, since large islands cannot form because of their high
energetic cost, determined by elastic strains. There are many additional complications

† We cannot review these calculations here, and we refer the interested reader to a recent review article by Liu
(1995) and references therein.
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such as polycrystallinity of the sample, surface reconstruction, and defects, which should
be incorporated into existing models.
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Zeldovǐc Y B 1942Sov. Phys.–JETP12 525
Zia R K P 1986J. Stat. Phys.45 801


